PHYSICAL REVIEW E VOLUME 55, NUMBER 1 JANUARY 1997

Multiple light scattering in anisotropic random media
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In the last decade diffusing wave spectroscpWS) has emerged as a powerful tool to study turbid media.
In this article we develop the formalism to describe light diffusion in general anisotropic turbid media. We give
explicit formulas to calculate the diffusion tensor and the dynamic absorption coefficient, measured in DWS
experiments. We apply our theory to uniaxial systems, namely, nematic liquid crystals, where light is scattered
from thermal fluctuations of the local optical axis, called director. We perform a detailed analysis of the two
essential diffusion constants, parallel and perpendicular to the director, in terms of Frank elastic constants,
dielectric anisotropy, and applied magnetic field. We also point out the relevance of our results to different
liquid crystalline systems, such as discotic nematics, smécfibases, and polymer liquid crystals. Finally, we
show that the dynamic absorption coefficient is the angular average over the inverse viscosity, which governs
the dynamics of director fluctuationsS1063-651X97)12301-1

PACS numbefs): 61.30—v, 42.70.Df, 78.20.Ci, 78.20.Bh

I. INTRODUCTION velopment of diffusing wave spectroscoppWs) [9-15,
which permits useful information to be extracted from dy-
Dynamic light scatteringDLS) is one of our most pow- hamic correlations of multiply scattered light. Coherent
erful probes[1-3] of the dynamics of materials such as backscattering, a manifestation of weak as opposed to strong
simple liquids, complex fluids, and liquid crystals. In typical Of true Anderson localization, has been observed in a number
experiments, light incident on the sample scatters once, arff €xperiment§16—22 and discussed in a number of theo-

its intensity is measured at a detector. Motion in the sample/€tical paper$13,23—28. DWS has opened up a whole new

or more generally fluctuations in the local dielectric constantiield of study. It provides heretofore unobtainable informa-

: . . - - bout the dynamics of turbid media, including dense
induce changes in the phase of scattered light, which glvgOn a X .
rise to temporal fluctuations of the light intensity measured a olloids[12], sheared suspensiof29], emulsions{30], and

' gams[31]. Because intensity variations measured at the de-
:Eg s]it:rgtg;;?tce?inegxsg\'gigtswgrfgﬁ dlir;?]tgestfﬂszco;géd_e(ctor arise from phase shifts distriputed over many scatter-
b i . . ing events, DWS detects dynamic phenomena at much
of order (Qu) ~~ whereu is a typical velocity. ___shorter time scales than normal DLS. This has permitted the
There are many materials such as colloids, emulsionsyeasyrement of hydrodynamic interaction contributions to
foams, and some liquid crystals that scatter light so stronglyhe giffusion constant of colloidal particlg32] and the mea-
that the traditional Single Scattering analySiS of DLS does nogurement of Shape fluctuation modes in tense emulsion drop_
apply. In these materials, light undergoes many scatteringts[30]. Photon diffusion and DWS have also found appli-
events before leaving the sample, and the transport of lightation in imaging of objects such as tumors in human tissue
energy is diffusive rather than ballistic. The study of light [33].
transport in random or turbid media dates back to radiative With few exception$34—37], both theory and experiment
transfer theory, first introduced as early as 1905 by Schustdrave focused on diffusive transport and DWS in isotropic
[4]. These systems are characterized by a scattering meagstems. There are, however, many turbid materials such as
free pathl, measuring the average distance a photon travelsonventional thermotropic and lyotropic liquid crystals, lig-
before Scattering, and a transport mean free pathlid crystalline CO||0idS[38,39] and emulsions, and also
* =1/(1— cosdy), measuring the distance beyond which themuscle tissues that are _anisptro_pic. This paper will develop a

tering angle and the angular brackets denote an average ov@isotropic media with particular applications to nematic lig-

direction weighted by the differential scattering cross sec!!d crystals. Though its inspiration is recent experimental

. . - : k on coherent backscatt¢B4,35, its purpose is to
tion. For distances greater théh, light energy transport is wor ; ; )
described by a diffusion equation with scalar diffusion con-Proaden the class of materials to which DWS and its offshoot

stantD = cI* /3, wherec is the speed of light in the medium. applications such as imaging can be applied. A preliminary

X . ccount of this work and experiments on multiple scatterin
There has been a resurgence of interest in light transpofl P P g

. . . i liquid crystals to which it applies were reported in Refs.
in turbid and random medigb] because of its close connec- (4q 411 An alternative derivation of the results reported here
tion to the problem of Anderson localizatip@] and electron

R and a more detailed account of experiments appear in Ref.
transport in disordered systerfis 8] and because of the de- [42]. A similar treatment of diffusive light transport and
DWS was developed by Tiggelen, Maynard, and Heiderich
43].
*Permanent address: InstituirfTheoretische und Angewandte [ g\nisotropic media differ from isotropic media in two im-
Physik, Universita Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, portant waysi(1) The speed of light depends in general on
Germany. both the polarization and direction of light propagation rela-
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tive to anisotropy axes, an@) scattering cross sections de- undergo a large number of scattering events before direc-
pend not only on the relative direction of incoming and scattional information is lost, and, as a resul, is finite.
tered light rays but also on their direction relative to  The outline of this paper is as follows. In Sec. Il, we
anisotropy axes. Diffusive transport in optically active iso-review light propagation including the one-particle Green
tropic media with light speeds depending on the state ofunction in homogeneous anisotropic media. In Sec. Ill, we
circular polarization has been studigZB|. Tiggelen has in- treat diffusive transport of light in general anisotropic ran-
vestigated anisotropic light diffusion induced by a magneticdom media. We introduce the structure fadBt(r,t) to de-
field H through a series expansionkh[37]. To our knowl-  scribe fluctuations in the dielectric tensor, discuss electric-
edge, however, no thorough treatment of multiple light scatfield autocorrelation functions and their meaning, and relate
tering in optically anisotropic media has been published. Fothem to the averaged two-particle Green function. We then
electronic systems anisotropic diffusion has been studiediscuss the one- and two-particle Green functions in the
both theoretically and experimentally in the context of local-weak-scattering limit and derive the diffusion equation for
ization [44,45|. light transport from the Bethe-Salpeter equation. We intro-
Optical anisotropy leads to anisotropic diffusive light duce the approximation scheme for the diffusion tensor and
transport. The equation governing the electric-field autocortook at the isotropic limit of our theory. Comments on DWS

relation function close Sec. lll. Section IV applies the general results of the
W(R,T,t)=(E(R, T+1/2)- £cE(R, T—1/2)) (&, denotes the preceding sections to nematic liquid crystals. A review of
dielectric tensoris relevant properties of nematic liquid crystals and light propa-

gation in uniaxial media is followed by an explanation of

dielectric tensor fluctuations in nematics. Finally, we discuss
1% . . . . . .
——V-DV+u(t) WR T,t)=0(R,T), 1) diffusive light transport and DWS in nematics. In particular,
al we provide explicit numerical calculations of the diffusion

coefficientsD; andD, as a function of Frank elastic con-

where D stands for the anisotropic diffusion tensor. The Stants, dielectric anisotropy, and external magnetic field, and
quantity (t) is the dynamic absorption coefficient measuredPoint out their relevance for different liquid crystalline sys-
in DWS experiment§9—15]. It results from an average of te€ms, such as discotic nematics, smeétiphases, and poly-
short-time dynamic correlations over angle and polarizationMer liquid crystals. The numerical calculations are summa-
We will provide explicit formulas foD and(t) for general ~ fized in Figs. 7-11. They are in excellent agreement with
anisotropic systems and then concentrate on nematic liquitecent experiments on the nematic compound 5CB by Jester,
crystals as one example of a uniaxial system. With the preao, and Yodr{41,42. At the end we address the dynamic
ferred axis along the unit vectar, the diffusion tensoD ~ @bsorption coefficient.

reduces td=D, 1+ (Dy—D )n®n wherel is the unit el-
ement. The dynamic absorption coefficig(tt) will turn out ll. LIGHT PROPAGATION IN A HOMOGENEOUS
to be the angular average of an inverse viscosity. MEDIUM WITH DIELECTRIC ANISOTROPY

In this paper, we will restrict ourselves to the weak- | jght propagation in anisotropic dielectric media is more
scattering limit, and we will treat multiple scattering via the complicated than it is in isotropic systems. In particular, the
Bethe-Salpeter equation in Sec. lll. In isotropic lossless sysglectric field is not always transverse, and the speed of light
tems, the diffusion equation can be obtained exactly from thgjepends on polarization and direction of propagation. In this
Bethe-Salpeter equation by considering only modes assocéection we review light propagation in anisotropic media.
ated with the isotropic and *“vector” spherical harmonics Following the work of Nelson and Lap46], we will intro-

Yoo andYp,. In anisotropic systems, all spherical harmonicsdyce sets of polarization vectors for the electric and dielec-

couple, and the calculation of diffusion coefficients involvestric field that will prove to be very useful for our forthcoming
the inversion of an infinite dimensional matrix, which can considerations. We start with Maxwell’s equations,

only be accomplished approximately. We will, therefore, be

content with a formal expression for the diffusion tensor in divD=470 4, divB=0,

general anisotropic media. We will, however, introduce a (2
sequence of approximations to obtain numerical values for 1B A 19D

the diffusion constants in nematic liquid crystals. Fortu- curIEz—J, CurIH:ijaJFEE’

nately, the first term in this sequence undergoes only a very

small modification in going to the second in this Sequence.\yherep ., andj, are, respectively, the macroscopic charge

Nematic liquid crystals present a difficulty that is not ge- 5nq current densities. We concentrate on a dielectric medium
neric to anisotropic systems. Light scattering is from fluctuas,itn

tions in the direction of the principal axis of the dielectric

tensor, which is parallel to the local Frank directofr). D=¢gE and B=H, ©)
Fluctuations inn(r) diverge asq~2 at small wave number

g in the absence of an external aligning magnetic fidld
This divergence leads to a vanishing scattering mean fre
path for extraordinary to extraordinary scattering in the limit
H—0. The diffusion constants are nonetheless well defined STUtdivS=jma E, (4)
and nonzero. For, if tends to zero, scattering takes place

almost entirely in the forward direction. Thus, light has to where we have introduced the energy density

and we assume that the dielectric tensgiis real and does
got depend on time. Then the energy-balance equation reads
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_1 - , o d(k
U= 5= (E-&oE+H H) (5) ea(e) ‘( )

and the Poynting vector

c
=—EXH.
S 477E H (6)
Both quantities strongly vary in space and time. If we aver- .
age over one period of oscillation, we obtain their averaged d3(k)
valuesu and S. In the following we use complex waves / . .
E=Eye '“' andH=Hye '“' whose averaged energy densi- & k|les(k)

ties and Poynting vectors are given by
u=(Ey- eEq+Hg-Hp)/(167) and S=c(EoX Hg)/(87).

For vanishing sourceg,; andj,,, we obtain the homo-
geneous wave equation for the electric light figlgtr,t):

2

€ d
curl curl+€2 2 E(r,t)=0. (7

dl (i’) e, (k)
Note that all solutions of Eq.7) have to fulfill the transver-

sality condition for dielectric field waves, diyE=0, unless FIG. 1. The polarization vectorg(k) and d(Kk) for a given
the electric field is static or linear ih Introduction of the propagation directiofk in an anisotropic media.

plane-wave ansatz
The two sets of polarization vectors fulfill the biorthogo-

E(r.t)=Eoe(k)exri(k-r—wt)] ®  nality condition
:gn\:vave equatior{7) leads to a generalized eigenvalue prob- di(f() ) ej(l2)= 5} (i,j=1,2.3 (13)
1 i.e., they are dual to each other like the basis vectors of the
[pt(k)_ & e(k)=0, (99  real and reciprocal lattice in a crystal. We will use both of
them as convenient bases for our tensor quantities through-
h out this paper. To prove conditiol3) we notice that
where P,(k) and g5 are symmetric tensors and derive from E9).
1 w2 the condition
2= a2 (10) L
2~ 2|8 d'= (14)
and ni N
Pt(f(): 1—k®Kk (12) from which Eq.(13) follows after an appropriate normaliza-

tion. The vectorsd® and d? are perpendicular t&. Then,
is the projection operator on the space perpendicular to thagain with Eq.(9) and the biorthogonality conditiol13),
unit vectork=k/k. The symbol® stands for the tensor prod- one can show that'L d”. In Fig. 1, we summarize the ge-

uct: [k® k]I —k; k The solutions to Eq(9) provide us with ~ ometry for a given propagation directién Finally, we recall
the characteristic light modes of the system determined bjhat in general the refractive indices are calculated from

the refractive index; (k) =ck/w and the polarization vector Fresnel’'s equatiof7]:

(k) of the electric field. We define the polarization vector 3 kz
of the displacement field by 2 ‘z L0, (15)

~ ~ - 8'
d'(k) = go&(K). (12

where g; stands for the principal dielectric constants, the
For each directiork, there exist two characteristic light eigenvalues ok, andk is the component of the unit vector
modes with associated polarlzatlodl$k)L k. When a plane k along theith eigenvector ok,. This equation is equivalent
wave with frequencyw enters the anisotropic medium, it tg deipt(k) £,/n?]=0.
splits into the two characteristic modes that travel with dif-  consider nowE,=Eqe (k) andH,, the amplitude of the
ferent speeds/n;(k) and wave numberis= wn;/c. We also  magnetic field wave, which are connected via Maxwell’s re-
find a third solution withn;=occ ande;(Kk)|/k, corresponding  lations:

to a nonpropagating mode withh=0. It violatesk- d®=
but is necessary to construct the complete Green function for kX E =2H and kX H= — w E 16
wave equation(7) (see below 0 0 0=~ oo (16
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The second equation also follows from the first once @. 2 (w2 K2 R R

is solved. For the nonpropagating mode=0), Hy, like [Go(k,w)] 1= 2 iy d*(k) ®d*(k)

Eo, is parallel tok. For the propagating modesl, is per- a=1 Na(K)

pendicular tk andgoE,. Using Eqs(9) and(16) one shows w2 . .

that electric and magnetic fields carry the same amount of + ?d3(k)®d3(k) (21)

field energy Ho-Hg =Eq- £0Eg) and that the averaged en-

ergy densityu of a light wave is by realizing that the unit tensor can be written as
1 R e o
U= g—Eo- oEg =5 —|Eol* 17) 1=2 sa(kedk =2 ddkeegk. (22

ij

1]

Here the meaning of the scalgy becomes clear. It is not the

magnitude of the electric field, becausék) is not a unit
vector, instead it basically stands for the square root of the

[ll. DIFFUSIVE LIGHT TRANSPORT IN ANISOTROPIC
RANDOM MEDIA

energy density of the light mode. The Poynting veGaloes We now consider a dielectric medium in which the dielec-
not generally point along. Its projection onk, however, tric tensor possesses a randomly fluctuating pa(t,t) in
fulfills the relation addition to the homogeneous tersp. We treatde(r,t) as a
Gaussian random variable with variance characterized by
A — C_
k-S=—u, (18 w* "
n BU(r.1):= a(de(r,t)® 5¢(0,0))N), (23

which is familiar for isotropic systems.

Finally, we calculate the Green functigby,(r—r',t—t')
for the wave equatioi(7), which has a source term propor-
tional to the time derivative gf,,. In Fourier space we have

wherew is the frequency of light. The superscrid) means
that we interchange the second and third indices in the tensor
productde® de to defineB”: [B“Jjj <( deixde; ). We call
B“(r,t) the structure factor of the system. It is measured in
single light scattering experiment$] and contains informa-
Go(k,w)=—1. (19)  tion about the elastic and dynamic properties of a system.
The electric light fieldE(r,t) obeys the inhomogeneous
wave equation

2p (i w?
th(k_?So

We expandsy(k, w) in the basige (k) ® g (k)} and calculate
its components by multiplying the last equation, respectively, 1 °

from left and right withg(k) and d“(k). Using the eigen- curl curk-[eo+ de(r, 1) | 777 |E(r =0, (24)
value equatior(9) and the algebra for the polarization vec-

tors, described above, we find thag(k, w) is diagonal: where we have used an adiabatic approximation to pull

og(r,t) in front of the time derivatives. It is valid if
-1

2 2 2 . . og(r,t) varies on time scales much longer than the time pe-

Go(k,w)= >, 2o Gkeel (k) riod of light and the passage time of a light ray through an
a=1 na(k) inhomogeneous medium.

2 . R Our task is to calculate measurable quantities from Eq.

+ ;ze3(k)®e3(k). (200  (24). A very general one is given by the spatial and temporal

autocorrelation function for the electric light field,

E(ry,t1) ®E(r; ,t2)), which we write with the help of center

The first term on the right-hand side represents the propagaé “ ” . : )
ing part of the Green function. We will always, throughout f*mass” (R,T) and refative (t) coordinates:
R ' T ! E*|R ' T t
+ E, + E ® - E, E .

this paper, indicate it by Greek indices. It acts on the trans-

verse part of the source term. Nelson and Ld8] have W(R,r,T,t)=<E

calculated an expression for its far field in coordinate space, (25)
which reduces to a spherical wave in an isotropic system.

The second term takes into account the longitudinal part of; is 5 second rank tensor. Foe 0 we derive the scalar
the source. In coordinate space, it is just a nonpropagating

6 function. As we go on, it will become clear that we can t t

neglect it within our approximation outlined in the next sec- W(R,T,t)= < E( RT+ 5) - &oE* ( RT-3 > (26)
tion. We will therefore skip it when we represent tensors
through their components. We will also see that for allwhich att=0 is equal to the energy density of the light field
the tensors involved we can neglect the pondiagonal_ partgyhen the small fluctuating pade is neglected. Tha de-
Thus, whenever we use a Greek superscript or subsefipt  pendence is, e.g., due to time-modulated light sources, and
refers, respectively, to the basis “vectog,(k)®e,(k) or R describes variations of the energy density on long length
d*(k)®d*(k) (@=1,2). The last quantity we need is the in- scales. Fot+0, W(R,T,t) reflects the dynamics of the scat-

verse Green functiofGy(k,w)] %, which we conveniently tering medium through its dependence on the structure factor
represent as B“(r,t). It is measured in dynamic light scattering experi-
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ments either in single scatterif] or with DWS [49]. We
will see below that the Fourier transform with respect to

W(R/K,T,t), is diagonal in the basige,(k)®eg(k)} on

length (R) and time {T) scales much longer than the wave-

length and time period of light,
W(R K, T,t)~ >, WHRK,T,t)e,(K)oe, k). (27)

For t=0 we can, therefore, interpr&/*(R,k, T,t) as the
energy density of a light wave with wave vectorand po-
larizatione, (k). To clarify this interpretation we look at the
Fourier transform

f dSRdBrdet\N(R’r,T’t)ei(—K-R—k~r+QT+mt)

:<E

K Q
_,0)+_

k+2 >

K Q
k—E,w—i) . (28)

HOLGER STARK AND TOM C. LUBENSKY

ER/A(r,w) =

-———

%65(0,0) . > %2355(1',0)

(GRI4)(r,w)

FIG. 2. The mass operatoS¥A(r,w) in the weak-scattering
approximation consist of two scattering events from inhomogene-
ities in the dielectric tensor, which are tied together by spatial cor-
relations[ B“(r,t=0)] and the averaged propagatdG¥)(r, )
of the electric field.

sor and has componert€A];; = =,,Cjji A ) We have in-
troduced the retarded and advanced second-rank-tensor mass
operatorsSR and 2. In the weak-scattering approximation,
where the elements of the structure facBst(r,t=0) are
assumed to be much smaller than 1, these mass operators are

SinceR and T describe variations on long scales we haveProportional toB“(r,t=0) and can be written in frequency

K<k and Q<w. Thus the amplitude&(k=K/2,0+ Q/2)
are strongly peaked arounglandk, which can be identified,

respectively, with the frequency and wave vector of the light

waves in the medium.
To calculate the autocorrelation functi®i(R,r,T,t) for
special light sourcedVy(R,r,T,t) and/or given boundary

conditions, we need the averaged “two-particle” Green

function

®=(GRaGMHN, (29

space as

IRA(r, @) =Be(r,t=0)(GVA)(r,w). (32)

Figure 2 gives a of
ER/A(I’,w).
Finally, in momentum space, we get from Eg§l),

diagrammatic  representation

(GRMY (K, w) =[Gy Y(k,w) —ZFAk,0)]7 % (33

The inverse Green functio@gl(k,w) is diagonal in the ba-

where GR and G* denote the retarded and advanced Greensg {di(lA<)®dj(IA<)}, and XA (k,w) causes a small perturba-

functions withGA=[GR]*. Then

W(1)=f d2 d(1,2W,(2) (30)

(for notation see Appendix )A In the second subsection we

will derive the diffusion pole of®, i.e., that part of® that
corresponds to a diffusion equation f&/(R,k,T,t) in the

variablesR andT. It governs the propagation of light energy

at long length and time scales. The timill appear in an

tion. From perturbation theory we know that to zeroth order
in 3RA the eigenvectors 06, *(k,w) — EFA(k,w) are un-
changed, whereas to first orderd¥” the diagonal elements
[ZRA(k,0)i=a(k)- 2Rk )& (k) (34
contribute to the eigenvalues ¢GR*) renormalizing the
wave numbers ¢/c)n; of the light modes. The significant

effect of FA comes from its imaginary part. Then, in its
final form the propagating part of the Green functions reads

absorption term of the diffusion equation, which is zero for
t=0. In the first subsection we calculate the averaged re-
tarded and advanced one-particle Green functions, which we

need for the derivation oP.

A. The averaged one-particle Green function

The one-particle Green functiof&®) and (G*) follow
from Dyson’s equatio50], which we give in a formal no-
tation:

(GRA) =Gy + GeXRA(GRA). (31

(In the following we will use a coordinate-free representation
for tensors and their contractions which we explain here. It

A andB are second rank tensors soAB with components
[AB];j =2 AiBy; . For fourth rank tensor€ andD we form

a tensor CD of the same
[CDJijki = ZmnCijmnDmnki- Finally, CAiis a second rank ten-

rank with components

2
(G (kw)~ X (G (kw)]"e(oe,k) (35)

with

[(G¥A) (k,w)]*= 3;— kZA F—
’ C® n%(k) cny(kl (ko)

3

o)

(36)

We have introduced the scattering mean free p@(tﬁ,w) of
he light mode{k“|e,(k)} which travels with a wave vector
k*=(w/c)nk and polarizatiore,(Kk):

-1

I (kw)= (37)

c ~
— (K [IMER(k*, @) ],
w
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To arrive atl a(f(,w), we used a coherent potential approxi- kjl_ k., kf{_
mation replacing the argumett of [2RA(k,w)], by the —_——— - -
wave vectork®=(w/c)nk of the light modes wherés, @ = fH(K,Q) + :Blocjk/(t)
diverges. InER follows from Eq.(32) using the momentum ‘
shell approximation ’ &—»
E’ k_ k'
TC oA -
[IM(GF) (k,0)]*~ = 5 —n,(K) ((w/C)n (k) k) <o <o
(38) + : : +
P o . . ——— P — i
valid in the limit 3R—0. We finally obtain
-1 FIG. 3. The two-particle Green functiok as a sum of ladder

|a(|2,w): , (39 diagramsf(K,Q) propagates two electric field modes with wave
vectorsk’, andk’ Both are scattered by the same inhomogeneity in

h I ibl . fthe i the dielectric tensor described by the structure faBffr(t) for the
where we sum over all possible scattering events of the IN3cattering vectok—k'.

coming light mode{k”lea(IZ)} into modes{qﬁ|eﬁ(lz)}. The
single-scattering event is described by the structure factor

2
T -~ " _
En“(k)ﬁzl faﬁ[Bk“qﬁ(t_o)]aﬁ

2i

w
A w0,0:2| Im Rk, = — 5. (4
1) w4 O N2 Ek( ) 2 ( w) c na(k)la(kiw) ( 7)
[Bkaqﬁ(tzo)]aﬁz?qea(k) : 58(q510)eﬁ(q)| >1 (40)
L . . . . B. The averaged two-particle Green function
which is proportional to the differential scattering cross sec- _ )
tion. We also introduced the scattering vector The averaged two-particle Green functidn obeys the
Bethe-Salpeter equatidb0]
(OIS -
Os= 5 (Nek—n0). (41) P=[(GHa(GHM+[(C)a(GHNMue, (48

hereU stands for the irreducible vertex function or inten-
notation for angular integration: ity operator, which in the weak-scattering approximation
: equals the structure factdf~B. The Bethe-Salpeter equa-
dQq . tion is best handled in momentum ang frequency space. With
Jdﬂ. . —j (277)3n3(q)- L (42 all arguments, the.Green function d&,,,(K,Q,t) (see Ap-
pendix A). The variableX, ) correspond to the center-of-

We point out that the scattering mean free ﬂ%‘(rkw) now  mass” coordinatesRk, T, introduced in the introduction to
depends on the directidnand the polarizatiorea(lz) of the this sect!on, and the wave .VeCtd{S.’k to relative coordi-
light mode. Following the work of Nelson and La8], it is natesr, r'. The superscripb is the light frequency, and the

. -~ : ' t dependence explicitly comes from the structure factor
straightforward to show that,(k, w) determines an exponen- _, . .
tial decay of the far field O(QR)(R,w) traveling in the di- Bkk,d(t). The explicit form of the Bethe-Salpeter equation
rectionk with polarizatione, (k). In our analysis, we have reads
neglected the off-diagonal componentsX##, so that the
polarization vectors of our light rays are identical to those of f
the homogeneous medium. We will use this approximation (
in the next subsection. We conclude with the definition of the _to (4)
two quantities =KD e 49

In Eqg. (39 and throughout this paper, we use a shorthan

dskl (4) ) [0} %)
277)3[1kk1_fk (K, Q)Big, (D]1P, 1 (K, 1)

which we derive in Appendix A. In the last equation we have
introduced an abbreviation for the tensor product of the av-
eraged one-particle Green functions:

AGH(K,Q)=(C®) (ks ,0,)—(GN (k- ,0_), (43

and

AE‘Q’(K,Q)=ER(k+,w+)—2A(k_,w_), (44) Lko(KrQ):[<GR>(k+-w+)®<GA>(kf1w7)](N)v (50)

and a shorthand notati ﬁ? for the combination of the5
function and the unit element of fourth rank tensors:

where

ki=k*xK/i2 and w.=w*+Q/2. (45) @ 3 ,
[ Lo ij 1= (2m) 8(k—K") (8 51 + 6y 65 ) /2. (BD)

We will use both of these in the following, especially when

K=0andQ=0: Herei, j, k, andl are Cartesian indices. The Bethe-Salpeter
equation(49) can be solved formally by iteration, leading to
AGP(0,00=2i |m<GR>(k,w) (46) a sum of ladder diagramsee Fig. 3. The multiple integrals

and the sum can be done analytically ®&function correla-
and tions forK— 0, and the solution represents the diffusion pole
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of ®. For the anisotropic, long-range correlations of our

problem this procedure is not possible. Vollhardt andi&o [AGR(K,Q)]*~[fE(O, 0)]““([A2f2’(0,0)]a

[51] derived the diffusion pole for isotropic electron trans-

port directly from Eq.(49), and MacKintosh and Joh5] Gy e 20

applied their method to light. In the anisotropic case one has T Tk N (57

to be more careful, as Wfte and Bhatt showed for electrons

[44]. We will proceed in a similar way, however, our prob- As usual, the Greek superscript or subscript refers,
lem is more difficult because we have to deal with the dif'respectively, to the basis ‘“vectors’e (IA<)®e (|”() or

ferent polarizations of light. d*(K) @ d : . © o )
() () ) (k)y®d*(k). Equation(57) gives [AG/(K,Q)]* to first
Let_ Wi (K. anq AP(K,Q,1) be, _respectlvely, the order inK, 1, andX.. It shows clearly where the wave vector
nth eigenvector and eigenvalue of the integral operator ofc 5.4 the frequency) come in. Now, we formulate eigen-
Eg. (49), value equation(52) in components, choosing{=0 and
0 =0. Then, we apply the last equation and arrive at

%,
f 2yl ~ KK QB (OTW) =N, . MG 20\
P! 3
and W{"V(K,Q,t) the eigenvectors of the Hermitian adjoint o J’ dk; 5
1. - ~[AGP(0,0)]° BY ()1.,¥f (58
operator[52]. Then it is straightforward to shopi5|, with [AG¢(0,0)] % W[ ki, (D]agWi,  (58)

the aid of the completeness relation
=MKQH[AZZ(0,0], ¥

E \Pﬁ”@@ﬂ,‘): lfi), , (53 as the eigenvalue equation, which is correct up to first order
n in K, Q, andX. In a next step we use the ansatz
that ~ <~ n
ViE[AGH(0,0)]%| Worrt 2, Wigf(k)| (59
wewl
q;;"k,(K,Q,t)ZE %fﬁ’/(}(,()) (54) for the eigenfunctions to turn the eigenvalue equation into a
n A matrix equation. The first factor on the right-hand side forces

k to equal @w/c)n,(k) in the momentum shell approxima-
solves the Bethe-Salpeter equation. Whéh=0 and tion:
Q=t=0, the quantityAG.(0,0), defined in Eq(43), is an
eigenvector of Eq(52) with eigenvaluex(®(0,0,0)=0. To @ @ i ” (2 oy )
prove this statement we use a special case of one of the Ward [AG(0.0)] tm(c/w)ng(k)& c Na(k)=k /. (60)
identities(see Appendix B}, -
The amplituded, represents the zeroth eigenvector, and the
d3k’ second term involves a complete set of real basis functions
AEE(O,0)=jWBfk,(t:O)AGE’,(O,O), (55 (k) on the unit sphere and for the space spanned by
e;®e; and e,®e,. We will comment below on how to
choose these basis functions. Keeping only dominant terms
and the relation in the smallQ, K, andt limit, we can write the eigenvalue
equation in matrix form as

AG{(0,0)=f¢(0,00A%(0,0). (56) —
2n® . =
—[-iQ+u(w,t)] —IGK] || ¥y

The first equation is obvious from the definition of the mass me .

operator, and the second one is given in Appendix B2. We —iG(K) B

have identified the diffusion pole, as we shall explicitly see

soon. The result is valid beyond the weak-scattering approxi- St ﬁ}o
mation and based on the Ward identit[&4]. All other ei- =2 K, Q,t) s s B (61
0o <1

genvalues of Eq(52) are positive, and in the real-space co-
ordinateR, they give exponentially decaying contributions to
@, (K,Q,t), which are not important at long length scales
[15].

The diffusion approximation follows when we calculate . . . A
A O(K,Q,t) with the help of perturbation theory in the limit [Bl=m>, { anJAB[QDfY(k)QDf(k)—qoia(k)sojﬁ(Q)]
K,Q,t—0. First, we have to get the eigenvalue equation in @p Ik a
this limit. To proceed we need the following equation, which
we derive in Appendix B2: X[Bfaqﬂ(o)]a[;]- (62

The matrix B basically represents the structure factor
[B;’aqﬁ(O)]aﬁ in our chosen basis,
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The vectorG with components c
K-D(w)K= ﬁQ(K)-B’lg(K) (71)
n

- Gy 'l -
[aKm=wE.kmam—7%——;&ﬁw> (63)
k andN=—2n3w?/(c3). When u(w,t)=0 the Green func-
is linear inK. Another important term is the coefficient tion ®,,,(K,Q,t) possesses a simple diffusion pole with an

3 anisotropic diffusion tensob(w). In addition we have the

_Cm ® ® dynamic absorption coefficient(w,t), which forms the ba-
wle0= ﬁazﬁ ﬁﬂfaﬂ[Bk“qE(o)_ Byags(D]ap sis of DWS. We will discuss it in the next subsection.
(64) From Eq.(71), it is clear that the problem of calculating
D(w) reduces to the problems of calculatiggK) and the
where inverse matrix 3~ 1. If we had at our disposal functions
1 ¢;(k), that diagonalizés, our task would be simple:
nd=_—> f dQy n3(k). (65)
g ¢ o [9KT
K-D(w)K=—_ . (72)
For reasons that will become clear shortly, we will refer to 2n® T [Bli

m(w,t) as adynamic absorption coefficierit is an average
over dynamical modes that decay in time. As a result, itUnfortunately these functions are difficult to find in aniso-
increases from zero with increasing-0. Finally we have tropic systems, and we are reduced to seeking usable ap-

the constant proximation schemes. One scheme is to choose functions
¢i(k) so that only a few components ¢{K), say[G(K)];
S=m> f J' [BLs(0)]ug (66)  fori=1,2, are nonzero. Then, if the off-diagonal components
ap JieJgpm 1 of [Bl;j, couplingj for j>2 toi for i=1,2, are small,

2 43K [Q(K)]i[B‘l]ij[g(K)]j can be approximated by using only
=_ 77_22 f — thei,j=1,2 submatrix of B];; to calculate[Bfl]ij . We will
(O (2m) use this approach in numerical calculationddgtv) in nem-
atic liquid crystals in the next section.
X[AZE(0,0)],[AG(0,0)]“. (67) To test our theory we apply it to isotropic systems. We
] . ) concentrate on the case where fluctuations in the dielectric
The second equation above states fhais proportional to  tensor originate from density fluctuations onlges so1.
the normalization factor of the eigenfunctidis’(0,0), with  Then the components of the structure factor assume the form
A3?(0,0) being the eigenfunction of the Hermitian conju-
gated problem. The vecta$, and the matrixS, are irrel- @ = K)-e.(0)12B®
evant here. FoK,Q,t=0 the zeroth eigenvalue®) corre- [Bregp(0ag=l (k) -5 "B (cosdy). - (79
sponds to the eigenvectdrl,0,0, ...] in the eigenvalue
equation (61), and we want to know how it evolves for small
K, Q, andt. The vectorG(K) couples the 00 element with
the matrix53. The coupling can be removed by an orthogonal
transformation with

where B®(cosd,) solely depends on the scattering angle

Y. In isotropic systems, all the polarization vectors perpen-

dicular tok are equivalent, and the diffusion constant should

not depend on the special choice we make. Therefore, to treat

the factor [ea(k)-eﬂ((q)]z, we can add integrations

Jdo,/(27)fde,/(27) in the formula for B. The angles

) (68) ¢, and ¢,, respectively, describe rotations of the polariza-
tion vectors abouk andq. The integration ovegp; and ¢,

which essentially renormalizes the 00 element. Calculatingor @ fixed scattering anglels is straightforward, and we

A (® from the transformed system to leading orderkd  obtain

shows that (93, is equal to the renormalized 00 element, or

d d - . 1+coS 9,
2@ C f Zq;_lf Z(z:[ea(k! ¢l)'eﬁ(q1 ¢2)]2: 482 )
NO="—| i 0+ u(w,t)+ —G(K)- B~1G(K) 0
cx 2ns

1 i[G(K)]'B~?
—iB7G(K) 1

.

' (74)

(69) where the dielectric constasty comes in through the nor-

tion of the averaged two-particle Green function from Eq.@ble to show thal3 is essentially diagonalized by spherical
(54), harmonics(Our formulas are written for real basis functions,

a generalization to complex ones is straightforwass ba-

" 1 AGE(0,0)@AG‘Q’,(0,0) sis functions we chooswl,m(k)z[Y|m(z?,¢),Y|m(6L¢)A]
(I)kk’(K’Q't)NN 0+ p(o,0) +K-D(w)K (70 and @um(K)=[Yim(9,9),~ Yim(9,9)] with cosd=k-K.

We also use the addition theorem,P,(cosds)

with % EnYin(9,0)Yim(9',¢") [53], and arrive at[B]%)],

"'m’
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%8,y 01 Ompy.  The only nonzero element ofG is
[Gli10= — 2e,K/+/3, and we finally find the formula for the
diffusion constant:

ﬁiT—V D(w)V+ u(w,t) |WRT,t)=0(R,T). (76)

This equation is the basis of DW$4]. Solving it for special
boundary conditions and source¢R, T), which depend on
f dcosd(1—cosds) experimental arrangements, give4R,T,t) in terms of the
dynamic absorption coefficient(w,t). In our derivation of
-1 the diffusion pole we had to restrict ourselves to timegth
><(1+co§ﬁs)B“’(coaﬁ‘s)} : (79 [Blgs(0) — Byags(t) 1ap<[Biags(0)]up - In this time range
we expect to be able to perform a Taylor expansion tinat

ives a linear time dependence fofw,t):
wherec, stands for the speed of light in the system. Com—g P o(e.)

pared to the scalar case we have an additional factor w(w,t)= uot. (77

1+ cog 9. B(cosd,) alone describes a scattering process

with incoming and outgoing polarization perpendicular to theThe constanj, reflects some averaged dynamical properties
scattering plangvertical-vertical(VV) scattering, whereas of the system. For the diffusion of particles in colloidal sus-
cog¥B(cosds) belongs to scattering with polarizations in pensionsu,=2Dgw?/(1*c), whereDy is the self-diffusion

the plane[horizontal-horizontal(HH) scattering [1]. In a  constant of the particlggt9]. The condition just imposed on
group theoretical Ianguaqefaqﬂ(O)]aﬁ transforms under a t means that DWS probes the dynamics of a system on a
high-dimensional identity representation of @D The rela- much shorter time scale than single light scattering does,
tion [B]Z',T,m,méwémmr then means that we have decom-which requires times whergB,.s(t)].s has already de-
posed B] z'lrlﬂ,m/ via the irreducible representations of @D cayeo_l considerz_ib_ly. DWS, theref(_)re, offers_ th_e possibility of
For less symmetric phases, like a nematic liquid crystal, wstudying the validity of the dynamical description of the sys-
can at least partially diagonaliz8 with the help of group tgm on short time scales. This was done for coIIp|daI suspen-
theory. The relevant symmetry group..Dhas only one- SIONS by Kaoet al. [32], who studied the Brownian motion

dimensional representations induced by the function® Single particles at short times where the mean-square
exp(ime), whereo is the azimuthal angle around the sym- diplacement is not simply proportional td49]. As a result,

metry axis. Decomposing with the help of spherical har- #(@;t) does not follow the linear time law of Eqr7). Ex-
; - yim . ) perimentalists prefer a different picture for DWS, which they
monics giveq B],, ., * dmny, Where different andl’ now . )
y'l'm . have developed for colloidal suspensiga8]. They sum up
couple to each othegisee next sectign

o . all possible light paths in the scattering medium to arrive at
The numerator of the Green function in Eg0) contains the time correlation function after some averaging procedure.

an interesting effect. The second facthG;(0,0) collects  \yg will show here that our approach is totally equivalent to
the light sources or the incoming light waves. The first factorihis picture. However, it has the advantage that it automati-
determines the energy densiy“(R,k,T,0) of an outgoing cally tells us how to perform this averaging procedure.

light wave independent of the sources. This means that in the pws experiments are usually performed with continuous
diffusion approximation the outgoing light loses all its cor- jight sources and the diffusion equation reduces to
relations with the light sources. Integratiid\G;,(0,0)],

over the wave numbek shows that the ratio for the energy [w(w0,t) =V-D(0)VIW(R, ... )=0(R, ...). (78
densitiesW“(R,k,T,0) in polarization states 1 and 2 is
[ny(K)/n,y(k)]3. Experiments measure light intensities. In
Eq. (18) we learned that only the projection of the Poynting
vectorS* onk is simple:S*- k= (c/n,)W*(R,k,T,0). Its ra- [

16
D:§7TCO

We can rewrite this equation as the Laplace transform of a
problem, where the source is a light pulse,

d
——=V-D(w)V

- PRD=81ER,...) (79

tio for the output polarizations 1 and 2 i, (k)/n,(k)]?,
which gives the ratio of the output intensities when the Poyn-
ting vectors are parallel tk. This is the case for light trav- with
eling along the principal axes of the dielectric tensor. The
Green function in Eq(70) suggests that there is a diffusion
equation for each light wave with directidnand polariza-
tion «. This does not mean that we have additional con-
served quantities besides the energy density. It only meanghe lower limit —0 means a small negative timein order
that after randomizing the incoming light the distribution of to pick up thes function. We can interpre(R, 7) (after an
the light modes in the light field stays the same. appropriate normalizatioras the probability that light, emit-
ted by the source at time=0, arrives at the detector at point
R after a time 7. Then the time correlation function

W(R, ... = ijP(R,T)eXF[—,u(w,t)T]dT. (80

C. Diffusing wave spectroscopy

W(R, ... ) follows after a summation over all light paths
If we sum over the two polarization states and integratewhere each light path contributes a factor [exp(w,t) 7] to
over all wave vectork the Green function in Eq(70) is  the decay ofV(R, ... ). For isotropic systems is directly

equivalent to a diffusion equation for the scalar time-connected to the path lengt+cr/n of light and P(R,7)
correlation functionW(R,T,t), introduced in Eq(26), also represents the path-length distribution. The exact form
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of P(R,7) depends on the choice of the light source and thevith a refractive indexn,= e, . Since it behaves as in an
boundary condition$49], which we do not address here.  isotropic system, it is named thadinary light mode. We
choosen, parallel to thez axis and writek in spherical

IV. LIGHT DIFFUSION IN NEMATIC LIQUID CRYSTALS coordinates:
The nematic liquid crystalline phase consists of rodlike 0 Sind, cospy
organic molecules that tend to align parallel to each other but _ S ;
that show no long-range positional order of their centers of No=| 0| andk=| sindsing |. (85
mass. The local average direction of the molecules is de- 1 cosdy
scribed by a unit vecton(r,t) called director. It appears in . ) )
the local dielectric tensor Then the ordinary light ray is represented by
e(r,)=s¢, 1+ As[n(r,0)®n(r,0)], (81) L | ~Sinex
. . ) n,=+e, andey,(k)=—| COSpy |. 86
where e, and | are the dielectric constants for electric 2 \/T 2(k) ny 0 (89)

fields, respectively, perpendicular and parallel to the director
and whereAe =g —¢, stands for the dielectric anisotropy. |, 40 extraordinarylight mode, the refractive index de-
The energetically favored state of a nematic phase is a uni- q r1A< dth larizati @ (R) | I i
form director fieldn(r,t) = n, throughout the sample. Its dis- PENYS Ok and the polarization vec @ (k) |slg?nera y no
tortion costs energy, which can be calculated from the FrankP€rpendicular tk. It follows from ey(k)= &, 'd (k) where
Oseen-Zoher free energy54]: the polarization vectod'(K) is determined byd*(k).L d?(Kk)
anddl(k)l k. The refractive index can be calculated from the

1 . . ; . )
Fn]= Ej [K 1 (dlivn)2+ K o(n- curln)+ K 5(n curin) 2 eigenvalue equationi9) or Fresnel's equatiorf15):

1+a 12

— Ax(n-H)2]der. 82 ny(k)=nafiy(k) - with (k)= 1+ acod,

There are three characteristic distortions, called spkay) ( @7

twist (K,), and bend K3), whereK,, K,, andK; are the  where we have introduced the relative dielectric anisotropy

Frank elastic constants. We also include a magnetic-fieldf the system,

term with Ay = x;— x, the anisotropy of the magnetic sus-

ceptibility. If Ax>0 an alignment of the director parallel to a=Ac¢le, . (88

the fieldH is favored. Even in a uniformly aligned sample ) )

there exist thermally induced fluctuations of the director: ~ Equation (87) does not represent the most symmetric form
for ny(k), but we found it useful for our calculations. Fi-

n(r,t)=ng+ on(r,t). (83 nally, we get
They lead to fluctuations in the local dielectric tensor and COSpy ) 0
hence scatter light. This is the physical phenomenon for 1( ) . 3 sindy
which we want to calculate the diffusion approximation of (k)_ cosdy SNk 1+« 0 (89)
light. In order to apply the formulas of the preceding section, 0

we have to look first at the light propagation in uniaxial
media. Then we need to calculate the structure factor, asso- In the structure factol always appears together with the
ciated with the director fluctuations, which governs therefraction index. For the extraordinary mode we, therefore,

single-light-scattering event. replace the angular variables éqsand sin%, by an equiva-
lent set,
A. Light propagation in uniaxial media - ~ o
ght propag _ Cr:=ny(k)cosd, and S.:=nq(k)sind, (90
Let us, for a moment, suppress the fluctuations of the
director and look at a homogeneous medium with a uniaxiain which the refraction index takes the form

dielectric tensor R

_ , , The “trigonometric” identity,
The equilibrium valueny of the director is also called the

optical axis because it establishes a special axis for light S+ (1+a)Ci=1+a (92
propagation. The two light modes follow from solving the
eigenvalue equatiofB). They are well described in the lit- is valid. The new coordinat€, ranges from—1 to 1 and
erature[47]. We mainly summarize the results here, intro- contains the same information as &gs Thus, we can
duce some notation, and perform an interesting variablehoose, e.g., spherical harmonics as basis functions on the
transformation for later use. unit sphere with co8, replaced byC,. The usefulness of
One light mode is immediately obvious. Its polarization C, appears when we calculate its differential with respect to
vectorse,(k) andd?(k) are both perpendicular to, andk  cosdy:

80=8L1+A8[n0®n0]. (84)
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no (n(gs,t)® 5n*(0s,0))
s 2 kgT Ks(ds) |. R
=5§1 K@ exp[— Sy LECOELFCRINCE)
. ith
u2(qs) Wit
K(0s) = K507 +Kaaf + AyH?, (99)

whereq, andq are the components af;, perpendicular
ﬁl(qs) and parallel tong. The chosen basis fafn(qgs,t) provides
the normal coordinates, because the correlation function is
FIG. 4. Basis vectorsi;(q.) and (,(qe) for given directorn, already diagonal. The free energy of one director mode fol-

and wave vectogs. lows from the Frank-Oseen-gber free energy(82) as
Ks(ds)| 8ns(as,t)|. For a general vectay it is either com-
(1+ @)dC,=7 1(@)dcosﬂk. (93)  Posed of splay and bend{ 1) or twist and bend distortions

(6=2). The factoikgT/K(qs) results from the equipartition
The differentiald C, absorbs the factdn 3(k), which always theorem giving the mean-square amplitude of each mode.

comes with our integrals thus making them easier: The dynamics of the director modes is described by the
Leslie-Erickson equationfs5]. They combine the Navier-

dQy 5 - 3 dCdoy Stokes equation for a uniaxial media with dynamical equa-
fﬁl' . :f—(27r)3 ni(k)---=n3(1+ a)f 2m? tions for the director. A detailed analysi§5] shows that

(94) director modes are diffusive with a relaxation frequency
given by the quotient of elasti§Ks(qgs)] and viscous
Alternatively, we can say that we have constructed a comf 5 4(qs)] forces. This is the origin of the exponential factor in
plete set of basis functions in the variables &p@nd ¢, the correlation function. The viscositys(ds) is a combina-
with respect to the weight function,(k). In the following tion of several Leslie viscosities, which we will address in
we will also use the notatio€,=cosd, and S =sind, for  Sec. IV D. We neglect a fast relaxing part that comes from
ordinary light modes. the coupling between the director and the fluid motion. Fi-
nally we are able to write down the structure factor

B. Structure factor for director fluctuations 4

2 ~
1) N(e,.es,Us)
R

Here we will derive the structure factor for director fluc- [Bﬁaqﬁ(t)]aﬁ=(Ae)2kBT — K
tuations. To begin we recall the general form of the time- ¢ =1 5(0)
dependent structure factor for light scattering in an aniso- K
oo . 5(0s)
tropic dielectric, X[ — (100
75(0s)
(1.)4 ~ ~ .
[Bﬁ)nqﬁ(t)]a[?:?<ea(k)' 55(%,09/3((1) with
r ~ N(ea!e ,l] ):[(n € )(l:l 'ea)_l—(a - € )(n 'ea)]z
x[e,(K)- 5e(0s,0)ep(@)]*), (95 prrel R P o

wheregs=(w/c)(n,k—ng0) stands for the scattering vector. a geometrical factor. It has two interesting implications.
We first need the Fourier componeft(qs,t) of the fluctu-  First, there exists no scattering of an ordinary light ray into
ating part of the dielectric tensor. We insert an ordinary light ray because.l ny, and thereforeN=0.
n(r,t)=ng+ én(r,t) into &(r,t) of Eq. (81) and collect the Second, forward and backward scattering aloggs always
first-or_der terms inén(r,t). After a Fourier transformation grhidden. The other terms @B;:aqﬁ(t)]aﬁ are familiar from

we arrive at the previous discussion. The scattering mean free path

5g(gs,t) =Ae[ng® dn(gg,t) + n(gs,t)®ng]  (96) l (K, @), defined in Eq(39), has been already discussed in
detail by two group$56,57. Its dependence dkand polar-
with én(gs,t) the amplitude of a director mode. It has only ization was calculated by Val'’kov and Romanfh6]. We
two components since the director is a unit vector. Furtherjust stress one point. The structure factor diverges for
more, for small fluctuationsén is perpendicular tg. An H=0 andg.—0, and we expect the scattering mean free
appropriate basis fofn(qgs,t), as shown in Fig. 4, consists paths to be zero in an infinite medium. Buyg=0 can only
of a unit vectori,(qs), lying in the plane defined bg, and  occur in scattering events where the extraordinary polariza-
gs, and a second onéi,(qs), perpendicular to this plane: tion is preserved. Hence, only the scattering mean free path
- - I1(k,w) of an extraordinary light ray is zero. In Appendix C
5n(qs,t): 5n1(qs;t)ul(qs)+ 5n2(qs yt)U2(qS)- (97) we give[leql(O)]]_l for q1—>kl (the notation we use there is

Next we need the temporal autocorrelation function of theej‘flé‘i”ed _belOW From thi_s form it izs obvziogs Zthat
director mode$54], which is rather complex. We state it and |, “(k,w) diverges weakly like—In[A xH/(K3nsw</c?)]
then explain the individual terms: for magnetic fields much smaller thafK;/A yn,w/c. The
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explicit form of the structure factor is very complex becausestants: K_1=0-79 and K_2=0.43.

it explicitly depends on the direction of the incoming @nd
outgoing @) light through the geometrical factor. We men-
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For green light
(w/lc=1.15<10° cm %) the dielectric constant is
g, =2.381 and the anisotropy 8= 0.228 corresponding to

tion some symmetry properties that facilitate its handling.the refractive indicea;(%=90°)=1.710 anch,= 1.543. Fi-

The first two are quite obvious:
[Blags(0)]ap=[ Byl 0) ] (102
and

[Biags(0)]ap=[B% a_qs(0)]up- (103

nally, the magnetic anisotropy id xy=0.95x10"', from
which we obtain a characteristic magnetic field of
Ho=3.6x10° G.

C. Light diffusion — results

In this subsection we discuss the two essential compo-
nentsD| and D, of the diffusion tensoD(w), which de-

The structure factor has to reflect the symmetry of the nemscribe the diffusion of light, respectively, parallel and per-

atic phase described by the group,D For example, it has
to exhibit the rotational symmetry about the directgr If
we choose

Sing,cospy sind cospq
k=| sindsing, | and g=| sindsing, |, (104
Ccosdy cosdy,

then [B;"aqﬂ(O)]aﬂ depends only on the relative azimuthal
angle o= ¢q— ¢i. The existence of mirror planes, contain-

ing ng, implies that the structure factor should be invariant

undero— —¢. In Appendlx C we give its explicit form in
terms ofCy, S, C4, Sy, ande. We also introduce a scaled

structure factof By, 3(0)]aﬁ through

2

kT ~
[Bqp(O) 1= (A0)2 7 s B0l (109

pendicular to the directon,. Before we can apply our
general formulas from Eqg62), (63), and(71) we need to
be more specific about our basis functiopgk), and we
need the derivatives of the componep@&, *],,, which we
gave in Eq.(21). The calculations for the latter are straight-
forward and the results for the extraordinary and ordinary
light mode are, respectively,

which depends on scaled parameters: the relative dielectri@ the above, we chose

anisotropya=Ae/e, , the Frank elastic constants

K,=K;/Ks and Ky=K,/Ks, (106
and the magnetic field
Ks
h= H/HO with HO n2 c A_X (107)
If we introduce the magnetic coherence length
L 108
&3= AxH? (108

which gives the length scale over which director fluctuations
are correlated, we obtain for the scaled magnetic field

A

ST (109

where \=n,w/c. Thus,h=1 corresponds to a very short
coherence length of/27r.

In the next subsection we will use the material parameter

[ 2 [ \1—Cicospy
(k)| K== —| K, +CK,
k €1 \ 1+«
(110
and
[ Gy, 2
G| K== (1 CicospK, +CiK)).
Kk 1
(112
KZ[KL 701KH]! (112)

wrote k in spherical coordinates as in E(L04) and then
switched to the newZ coordinate. The right-hand side of Eg.
(112) for the ordinary mode is the isotropic reswtK,
which is modified in the extraordinary case. As our basis
functions, we choose
@i (K) = @5m(K) = 8501m(Ci, @), (113

where ¢;(Cy,¢x) stands for a real combination of the
spherical harmonic¥|,(Cy,¢) and Y,_(Cy, ¢y in the
new coordinateC, instead of co#y. It will soon become

clear why the coordinaté, is so helpful. The indexy stands
for the basis of the tensor space, which we identify here with
our basise,®e,. Only functions with odd parity, i.e., with
odd |, contribute to the diffusion. This is immediately obvi-
ous from the parity of the structure factor and the derivative
of [Ggl]a. Furthermore, we only need functions
oim(Ck, k) containing cogg, (M=0); sirmg, is not nec-
gssary because of the symmetry[B((”aq,;(O)]aﬁ With this

of a typical nematic compound 5CB to discuss the diffusionchoice of basis functions the matri% is decomposed into
constants. 5CB is liquid crystalline at room temperature, angubmatrices for eacim, [B]yr|,m,°<5mm' because a term

we use the parametersrfé K below the nematic-isotropic
transition [58]. The bend elastic constant iK;=5.3

COSNYCON¢g, (N# M) is not compatible with the rotational
symmetry of the structure factor. Then, the diffusion con-

X 10 ‘dyn and is, as usual for conventional thermotropicstants Dy and D, are, respectively, related tm=0 and
nematic liquid crystals, larger than the splay and twist conm=1:
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C
DiKf=—=5 3 16K 1ol 170l G(K) o,
Y 114
c
DuK?=— 2 [G(K)1al B 151l G(K) 11

YY 115

with
nd=nd(1+a/2)=(e,)¥(1+al2). (116)

Only elements ofG(K) with =1 are nonzero[ G(K)],1m
#0, since the right-hand sides of Eq410) and (111) de-

|*=97T—2—Ci Ks 1 (121)
0 w kBT ;2

and write the diffusion constaf| andD, in the form
Dy=c,13Dy/3, D,=c,I3D, /3, (122

reminiscent of isotropic systems. The numerical fac@fs
andD, only depend on the scaled parameterd, K, and

K,, andc, is the speed of light of the ordinary light ray. We
stress thaly is an averaged quantity and that our theory does
not give a procedure to construct transport mean free paths
for different light directions(see, however, Ref42]). The

pend only orl =1 basis functions. This raises the question offactor 9 in I3 is chosen such thd?; andD, are approxi-
how important highet- contributions are. For our calcula- mately 1 in the limit of an *“isotropic” nematic with

tions we, therefore, choode=1 andl=3 functions:

¢10(C,¢)=67C, (1179
¢11(C, )= \/6m\1— Ccosp, (117h
03(C.¢) = \J4mC(5C2—3), (1179

©31(C,0)= ng/l— C%(1-5C?)cosp (1170

with the normalization

dCde
W‘le(ci ©)em (Co0)=6) Oppy . (118

The nonzero components g{K) turn out to be

[G(K)110= — 22, (1+ @)K /6, (1193
[G(K)]210= — 22, K| /6, (1199
[G(K) 1= — 22, 1+ oK, /6, (1199
[G(K)]211= — 22, K, /6. (1199

The integrations to obtain the matrix elementsibfequire
more effort. We were able to calculate the integrals ayer
analytically with the help of

fd¢kd¢qf(@q_¢k)zzwf def(e), (1209

f dqokdqoqf(so)COSPkCOShWf def(¢)cosp,
(120b

fd¢kd¢qf(¢)6052¢k=77f def(e). (1200

Ki1=K;=1, «=0, and h=0. We find D|=1.053 and

D, =0.998 with a small anisotropy @ /D, =1.06 because

of the inherent anisotropy in the nematic structure factor,
which is represented by the geometrical factor
N(ea,eﬁ,ﬁﬁ) of Eq. (101). We, at least qualitatively, under-
stand whyD, is larger thanD, . The diffusion constants
grow when the system’s ability to scatter light decreases.
From Eqs(114) and(119 for D| andD, , we recognize that
the diffusion constants are, respectively, determined by scat-
tering around the directornf=0) or perpendicular to it
(m=1). However, forward and backward scattering along
the director is suppressed by the geometrical factor and we
expectD| to be larger tharD, . In a completely isotropic
system, where we sél(e, ez ,Us) equal to 1, the transport
mean free path is easy to calculate. It is a factor of 4/9
smaller thany , which again demonstrates the effect of the
geometrical factor. For temperatuie=300 K and the pa-
rameters of the compound 5CB, which we summarized in the
last subsection, we obtai§=2.3 mm, in agreement with
experiment§41,47.

In the following we will explore the dependence of the
diffusion constants on the scaled parametéysK,, «, and
h. In Figs. 5 and 6 we plot the relative changes of the diffu-
sion constants when spherical harmonic$-e8, in addition
to =1, are included in the calculations. The field depen-
dence in Fig. 5 shows that the changes are around 1% or
smaller and thatD, is more strongly affected by higher
spherical harmonics. The same is valid for e and K,
dependence in Fig. 6. Only for extreme situatiéns<0.1 or
K,<0.1 do the changes grow to 3%. We conclude that the
restriction to spherical harmonics bf 1 gives a good ap-
proximation for the diffusion constants. The following
graphs will, however, all be presented with the3 contri-
butions included.

For the nematic compound 5CB we show in Fig. 7 how
the diffusion constant®| andD, and the relative anisotropy
(Dy—D,)/D, behave in a magnetic fiel@ andD, grow
with H because the magnetic field suppresses director

The results are listed in Appendix C. The remaining imegrajluctuations. The field dependence of the relative anisotropy

tions were performed numerically.

in the diffusion is weak. For ordinary magnetic fields up

To discuss the diffusion constants we collect the prefact® 5X10° G, which corresponds to a magnetic coherence
tors of the quantities involved to obtain an “averaged” length &; of approximately 1um, the changes i and

transport mean free path,

D, are small. The values foH=0 read D|=0.95 and
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FIG. 5. Field dependence of the relative changes of diffusion FIG. 7. Field dependence of the diffusion constaﬁq[s and

constants aftet=3 spherical harmonicgsuperscript 18 are in-
cluded in addition td =1 spherical harmonicguperscript L Pa-
rameters ar&K;=K,=1 and «=0. The magnetic field is given
relative to the characteristic field,=3.6X10° G of the nematic
compound 5CB.

D, =0.65 with aratioD| /D, =1.45 in good agreement with
experiment441,42. The reason why we pldd, D, , and
(Dj—D,)/D, on a large field range is to show that the
guantities smoothly approach finite valueshat0. This is

at h=0 and for vanishing scattering vectag. Strictly

speaking, our weak-scattering approximation is not appli
cable here. However, in a completely isotropic model we
understand why the quantities are finite. The familiar facto®

1—cosd in formula (75) cancels the singularity frong?
«1—cosds.

In Fig. 8 we explore the anisotropy in the diffusion de-
pending on the anisotropy in the dielectric constants. As
already discussed, when=0 there is a small nonzero value
of (Dj—D,)/D, . This grows witha because the speed of

D, and the relative anisotropyp(—D, )/D, for the nematic com-
pound 5CB K;=0.79, K,=0.43, «=0.228, and Hy=3.6
X10° G).

the anisotropy Dj—D,)/D, changes sign, and light dif-
fuses faster perpendicular to the director. This effect and the
inversion pointD|=D, should be observable in discotic
nematics wherer is negative.

Finally, we discuss the dependence of the diffusion on the

: ) ; elastic constant¥; and K,. In Fig. 9 we show thaD
not obvious since the structure factor possesses a singularigy

creases with the elastic constants since the light scattering
from the director modes increases. At the extreme values

K;=K,=0.01, we find5L=0.07. The contour lines reveal
n asymmetry between the spla{,) and the twist K;)
distortions.D, decreases more strongly wikty. The diffu-
sion constanD; shows a similar behavior. Figure 10 gives
the anisotropy D —D,)/D, for the same range. It grows
with decreasing elastic constants showing tat is more

affected by splay and twist distortions th&. The asym-
metry between splay and twist is clearly visible. The last two

light of the extraordinary light ray is larger along the director graphs cover the range of conventional thermotropic nemat-

than perpendicular to it. On the other hand, o« —0.15,

FIG. 6. Relative difference as a function b?l andK_z at
a=0,h=0.1 betweerD{V calculated with =1 spherical harmon-
ics only andD‘* calculated with both=1 andl=3.

ics where usuall\K;<1 andK,<1. In Fig. 11 we extend

0.4 T T ; T T T T
035 r
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0.05
0
-0.05 1
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FIG. 8. Relative anisotropy{;—D,)/D, depending on the
dielectric anisotropyr for K;=K,=1 andh=0.01.
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FIG. 9. Diffusion constanﬁl depending orh?1 andK_z. Param- FIG. 11. Relative anisotropyD(—D,)/D, depending orK_l
eters arex=0 andh=0.1. and K,, which range from 0.1 to 10. Parameters are 0 and
h=0.1.

this range toK;=K,=10 and observe that the anisotropy _ .
(Dj—D,)/D, changes sign. The contour line on the base of We also calculated a Taylor expansion for the relative
the coordinate system indicates whebg=D, . Roughly  anisotropy Dy—D,)/D, aroundK;=K,=1 anda=0 and
speaking,Dj<D, if K;>0.6 andK,>1.4. In a smectia ~ found

phase(Sm-A) twist and bend deformations are expelled by D/I-D o L

the layered structurgs9], henceK;<1. Unfortunately, this L%O'OG— 0.4K;—1)—0.3K,—1)

also means that certain scattering vectors show very weak D,
scattering so that the diffusion approximation cannot be a2 a2
achieved for reasonably sized samples. However, in the vi- +0.32+0.1(K, = 1)"+0.2K,~1)

cinity of a SmA-nematic phase transition, where the layered —0.08K,—1)(K,—1), (123
structure softengSm-A) or starts to form(nematic phase

the diffusion approximation of light could be used to studywhere the coefficients are material independent. Second or-
the behavior of the Frank elastic constants close to the trarfer terms ina and couplings tK; and K, are negligible.
sition. A second interesting system is a polymer nematic lig-The expansion summarizes the whole discussion.

uid crystal. For long rigid rods one expects a large splay
constant[60,61]. Taratutaet al. [62] determined the Frank
elastic constants for a special system and found the ratios

K1=0.85 and K,=0.07 with an absolute value of sure the averaged dynamical properties of a system through

K3=4.7x10"" dyn, which is suitable for the diffusion ap- ; ‘ iy :
proximation of light. From these parameters we predict athe dynamic absorption coefficiept(w,t) of Eq. (64). Di-

“large” ratio of D) /D, =2.8. The reported system has a rector modes are purely diffusive, as describ_ed bY(qu)
very low dielectric anisotropye and scatters light only forrf tEe structure kl:acécs)rdl].and possess a viscosjiyds),
weakly. However, it should be possible to find systems thatVhich we specify her '
are more favorable regarding.

D. Diffusing wave spectroscopy

With diffusing wave spectroscopy it is possible to mea-

(1397 — m0f)?

e ned+ nma df (1243

A2 it
72(0s) = Y—M (124b

with

Na= Hal2, (1253
M= (— 2t gt us)/2, (1250
Ne=(p3t ™t pe)l2, (1259
Mm= 1t 7pt 7. (1259

___ The Leslie viscositieg; govern the viscous flow of the fluid
FIG. 10. Relative anisotropyy—D,)/D, depending ork;  and couple it to the director motion. The Miesowicz viscosi-
and K,, which range from 0.01 to 1. Parameters are0 and  ties n,, 7,, and . can be measured in pure flow experi-
h=0.1. ments. The rotational viscosityy characterizes viscous
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forces due to rotations of the director. With the explicit for- ~ APPENDIX A: THE BETHE-SALPETER EQUATION
mula (100 for the structure factor and small enough times
to expand the exponential time factar(w,t) becomes pro-
portional to timet,

The averaged two-particle Green function with all space-
time coordinates looks like

(I)(Xl Y1, TliT_l;XZ Y2, 72 17-_2)

=(GR(X1,%2; 71, 72) @GA(Yp Y1, 72, 7)) V. (AD)

3 4

7 W
wlw,t)~(Ae)kgT —— >, f
2n3c® a.8.6 Jk

f N(ea,eﬁaaa)t
i msas)
(1260 After integration over electric field sourc#¥,(2) at points
(X2,75) and {y,,75) it provides us with the full autocorrela-
If we collect all the prefactors, the dynamic absorption coef-tion functionW(1) of the electric light field atx;,r;) and
ficient can be written as (y1,71):

2kgTo* 1t
pm(w,t)=pot  with ,u,0=ang—ﬁ

W(1)=f d2(1,2)W,(2). (A2)
m ey

(127

In the following we abbreviate a pair of points in space time
Here the numerical factox is a dimensionless angular by its indexi. The two-particle Green function follows from
average involving the geometrical factor and the viscositieshe Bethe-Salpeter equati¢s0]
of the director modes. It depends on the Leslie viscosities
relative toy and the dielectric anisotropy, and it is equal 1
if 75(ds)=7y anda=0. Whenz4(gs) =, « can be evalu-
ated analytically even fora#0, and we find u=(1
+al4)/(1+ al2). For the compound 5CB,y/z=0.60 The quantityf(1,2) stands for the tensor product of the av-
+0.20 P was experimentally determined by Ketaal.using ~ €raged one-particle Green functions:
DWS and the last formul§41,42. This value is in good R _ A — =N
agreement with the rotational viscosity=0.81 P of 5cB  f(L2=[(G ) (X1=Xz; 71~ ) (G ) (Yo~ y1; 72— 7).
[58] and shows the validity of the theory. Of courseis (A4)
larger than the measureg . since 7,4(qs) is smaller than
v [see Eqs(1249 and (124b] so thatu exceeds 1. How-
ever, the values of the Leslie viscosities are such ghat of
order 1 in usual thermotropic nematics. Furthermore, th
Leslie-Erickson theory seems to describe the director modei§I
properly down to 410 8s, the time resolution of the ex-

<I>(1,4)zf(1,4)+f d2d3f(1,2U(2,3®(3,4). (A3)

It propagates two electric field modes from 2 to 1 between
their scattering events. The irreducible vertex funclibde-
scribes different characteristic sets of scattering evigk

e will soon specify it. Note that there is no preferred point
time and that the scattering medium on average is homo-
! . . P - geneous in space. Therefore, all our averaged quantities do
periments, since there is no indication for a deviation fromnot change under translations in space time, and hence they

the_ "”eaf time dependence m(‘.‘”t) predicted by the dif_'_ can only depend on differences of the coordinates. We now
fusive director modes. Materials where the viscosities ..o ce center-of-*mass” R, ,T;) and relative ¢, ,t;) co-
75(a) for different values ofqs differ by factors of i -iec. b b

10°— 10 are polymer nematic liquid crystal62] with some
director modes relaxing on a much larger time scale than x=R+r/2, yi=R—r2,
they do in ordinary nematics. It would be interesting to study
such systems to see if they exhibit a deviation from the
Leslle-En_ckson_ theory for short times which, e.g., would n=T+t/2, 7=T,—t/2.
show up in a different temporal power law fo( w,t).

Finally, we point out an important difference between|t is straightforward to show that the Jacobian determinant
nematic liquid crystals and colloidal suspensions. The dyfor this coordinate transformation is 1, and we have
namic absorption coefficientl26) only contains the viscosi-
ties of the director modes. The Frank elastic constants cancel di=d®R,d%r;dTdt (AB)
because they determine both the light scattering and the dy-
namics. On the other hand, in colloidal suspensipS) All of our quantities only depend on differences in the
wo=2Dgw?/(1*c), where the transport mean free path  center-of-“mass” coordinate®; andT; because of the ho-
characterizes light propagation and the diffusion constanmogeneity in space time. To discuss the Bethe-Salpeter

(A5)

Dg the Brownian motion of the colloidal particles. equation we perform a Fourier transformation,
ACKNOWLEDGMENTS j d3(R;— R))d*(T; = T;)d®r;d’r;d®;d; - - -
We thank the Deutsche Forschungsgemeinschaft for fi- % CITKA(R—R) 4K T — K- T
nancial support under Grant No. Sta 352/2-2 and the NSF xR —I[K-(Ri=Ry)+ki-1i =kj-1]}
under Grant No. DMR 94-23114. We thank Ming Kao, Kris- Xexpli[Q(Ti—T)) + ot — wjt;1}, (A7)

ten Jester, and Arjun Yodh, who contributed to the work by
many valuable discussions. which transforms our quantities as follows:
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1 82 w1 ot
de(xq, Tl) 8 6(m1 — 1) 6(@y — @2) U(1,2=(8e(rq,t;)® 8€(0,0)) @
X Rl—R2+rl_Tz) 5( Ry~ R,— rl;rz)

X 6

4
¥
[}
]
_ N
U(1,2)= 1 (fese)™ ti—t, ti—t,
: T,—Tyr+ > Ol T1—Tyr— > |
‘1 . (A12)
de(y1,71) = 2 3—2 8(T1 = 72) 6(y1 — y2) where we neglect the partial derivativésT, which probes
time variations on much longer time scales than the time

FIG. 12. The irreducible vertex functiod(1,2) in the weak- period of light. Then, in Fourier space, we obtain

scattering approximation. The second pair of points in space time is

tied to the structure factor via delta functions. 3

w1 (o))
kakzz( K,Q) =F< 6e® 6e) N (k1 — Ky, 01— 0,),

D(1,4—BLA(K,Q), (A13)

U(2,3— wzws(K ), (A8) where the time derivative of & function was handled with
its representation via plane waves. Since the temporal corre-
oy lations in the dielectric tensor decay on a time scale much
f(1,2 =1 (K, ON T Ly A longer than the time period of lightl,,"*(K,{) is strongly
peaked aroundv;= w,. The Bethe- Salpeter equatlcmg)

wheres,, , =278(w,— w,), andl(k“l)( , defined in Eq(51), o _ o
then implies the same behavior fob,,; (K,Q),

a)la)
containsé(k; — k). The § functions appear sind¢1,2) only ) ) )
depends on the differences of the relative coordinates. In EqPy '(K.Q)=p(w—w')g(w’), wherep(w—o') stands for
(50) we give the explicit form off(K,Q). The Fourier ~the strongly peaked part aroung=«’ andg(«’) for the
L remaining smooth function inw’. The Green function

transformed Bethe-Salpeter equation finally takes the form
D, (K Q) picks up a source term of frequeney and

d®k; dwy produces an autocorrelation function with frequeneiesen-
(2m)*® 2 _[ ey oo, tered narrowly around»’. In the time domain this corre-
sponds to expi't) times a slowly varying factor in. It is
—f2(K, Q)wal(K,Q)]q):llj’,(K,Q) therefore appropriate to introduce the Green function
1
—fo “4) 5
=K 100, (A9) @’ (K,Q, t)_f B0 DY e 100 (A14)

and the autocorrelation functioW(K,k,Q, ) for light with
frequencyw and wave vectok follows from which gives this factor for light sources of frequeney. If

3 , we multiply Eq.(A9) by exd —i(w— »')t], rewrite the ar-
d>k d“’ oo’ (K, Q)Wo (KK ,Q, ). gument of( Se® 6e)N) asw—w,;=w—0'— (0;— '), and
(2m)® P 0 integrate ovet, we finally arrive at the Bethe-Salpeter equa-
tion of Sec. 1l B forCIJE’k’,(K,Q,t):

WK,k Q,w)=
(A10)

So far, our manipulations are generally valid. Now we
introduce some approximations. We use the weak-scattering
approximation in which the irreducible vertex function is f
given by[50]

el (KB (D]0 (K, 0,1)

—f'(K,0)1) (A15)
, 5 1 82 9?
U(1,2)~(Se(xy,71)® Se(yy, 1))V o4 37’1671 with
X 8(X1~X2) 8(Y1 = Y2) 8(71— 72) (71— 7). (o)
(A11) o (D=—ca(0e05e) M(k—ki ). (A16)

It only considers scattering events of the two electric field

modes, which are tied together through the structure factodn deriving the last equation we replaced the argumemh
Figure 12 gives a graphic representation¢,2). In center-  f(K,Q) in Eq. (A9 by o’ and the factor ] in
of-“mass” and relative coordinates we obtain “""1(K Q) by (0")%
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APPENDIX B: TWO IDENTITIES I‘("(O,O)=[(GR>(k,w)®<GA>(k,w)](N)
1. Ward identity
~ R a Al
The Ward identity establishes a linear relation between “;ﬁ [(GF) (k)" (G (k,w)]?
the irreducible vertex functiotd and the mass operator. In R R R R
the weak-scattering approximation it says X e,(K)®eg(k)®e,(k)®eg(K). (B6)

Terms such ag;®e,®e,®e, appear because the superscript
AZY(K,0)= f (ZT)ngk/(IZO)Afo(K,O), (B1)  (N) tells us to interchange the second and third basis vectors
in (GRY®(G"). They only couple nondiagonal components
to each other. Since nondiagonal elements are beyond our
which can be proven by a variable transformation of the2Pproximation we do not have to consider them. Then we are
integrand. For the general case see Vollhardt andflevo able to write

(51} [(GR (k)] TG (k)]*, a=p,
[f (00)]0"3 0, a#p.

2. A useful identity (B7)
In this subsection we derive a useful relation betweenrhe component O refers to terms suclegse; @ e,®e,. The

QEE(K,Q)- fR(K,Q), and AZY(K,€)). We start with the  derivation ofG* with respect tow just gives
efinition

Gy, 2
[Co Loy 20 (B8)

GU(K,Q)=(G (ks ,0.) = (GM (k- ,w-) (B2 e c

_ ) ) ) ~ The derivation with respect th contains two contributions:
and insert the unit tensdrin the appropriate representation:
7o’ > ACo k) @d,(k
Tk T2 | Tk d0edd

a

AG‘Ié)(KrQ):<GR>(k+ 1w+)([<GA>(k— rw—)]il

~[(GR) (ks )] G (k- ). G
(83)

T ak[d‘”(k)®d“(k)] (B9)

The second one only produces nondiagonal elements that we
do not have to consider. This statement seems to be obvious
because a small rotation &f rotatesd,(k). But our basis
vectors are more general and we have to look at it more
carefully. We have to show tha(k) (ol ak; )d'(k) is zero.

With d'=eqg and g, being symmetric and independent of

Then we introducé GR*) (k.. ,w-) from Eq.(33), use defi-
nitions (44) and(50) for A%/ (K,Q) andfy(K,Q), and arrive
at the final equation:

AGP(K,Q)=f2(K, Q)[AZ(K,Q)—{Gy (k04 ) k we can write
—g-! ~ 0 . A O B
Go (k- ,w_)}]. (B4) & (k) - d(=d (k- a(k). (B10)
j j
In the caseK,Q1—0, we get to first order ik and (). From the biorthogonality relation it is clear that
d (k) (k)= — (k) ——d(k B11
AGY(K,Q)=~=12(0,0) AE;’(0,0)——kK— Qf,
d dw which verifies the statement. We are now able to write down
(BS) Eq. (B5) within our approximation:
where we neglect first-order terms frdfhandAX,’ because [AGP(K,Q)]*=~[f2(O, o)]aa( [AX2(0,0)],
the components A3’ are already much smaller than one.
The last equation shows that the leading ordeKiand ) Gy e »
comes solely fronGy(k, ). Tk K- ?Q . (B12)

In Sec. A we calculated the Green functions
(GRA)(k,w) to first order inERA(k,»). They were diagonal
and only involved the diagonal elements ®¥*(k, ). Let
us look at Eq.(B5) under this approximation, concentrating We give the two important structure factors in scaled
on the propagating part of our quantities only. As explainedorm and in the coordinate§,, S, Cq: Sy, and . From
in the main text a Greek superscript or subscript correspondghe notation it is clear whether they beIong to an extraordi-
respectively, to the basis “vectorg (k)®e or d*(k)y®d*. nary or ordinary light ray. The parameters areK 1, K,, and
For f(0,0) we find h:

APPENDIX C: STRUCTURE FACTOR
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o _ S| Sisirfe (Sccosp—Sy)?
[Bquz(o)]lz—(1+a)2 Q? K_lQi+Qﬁ+h2+K_2Qf+Qﬁ+h2 (Cla
~., 1 coLoN; +2cospN,+ Ny sirfeN,
[Bqul(o)]ll_(l-l—a)z ~Z K_lQi‘FQﬁ"'hz +K_2Qf+Qﬁ+h2 (C1b
with
Qf=(Ck—Cy? QI=S(—25Sicosp+S] (C2)
and
N1=(S{Cq—SiC0%  Np=SS(SiCq—S5CW(Ck—Cy) 3
N3=S{SH(Ck—Cg)?,  Ny=(S{Cqt+ SiC2
The integration over gives
= s 11 1Rk 1TRK)|
f[Bquxonlzdcp—zSéK—z reml Tx K )+4S|<K2> (C4a
7 S C(M+2K,(S-S) C+2K(§+S) 1 [ C+Ky(S+S))
JCOSP[Bquz(O)]lsz 433 B K_g K—% +C(h) K_fl(K_l)
C(h)+Ky(SE+S%)| 482 — _
ST : +K=2‘*[C<h>+Kz<s£+s§>]l<Kz> (C4b
f BY1(0) Jude= — Sﬁc2+8‘§c2 e P o +L(%c +21c 2 I_l(K—Z)—I_l(K—l)
[ qul( )]ll (P_Z gq q g Kk K_l K_2 kq —1 C(h) Sk K K—Z K_l
4 9 —
+ K=| (K)[K1(SECq+SiCW) (Cy+Cy) + C(h)Cqu]] (C40
1

J cos/:[Bqu1<0>]ndqo—Z§:§;{—[<SKC SHC0°Clh) + 2K (S{CE - SICR (S{— sz)]——(Skc +SaCAC(h

_ C(h)+Ky(Si+S2) <h>+K1<Sk+82
2, a2 2 2C,)2 —— il - 2 L Y
+2K,(SE+SD)]+ C(h)(SKCq+ SaC) K21 (K,) K21 (K,)
C(h)+K %)
I i Kl(% [Ky(SECq+ S{CW(Cict Cg) +C(NIC,Cy (C4a
1
with _ _ —
C(h)=(C—Cg?+h?  and 1(K;) ={[Ki(Sc— Sp?+ C() [K{(Sc+ S+ C(h) ]}~ 12 ©

The structure factoﬁgﬁ’lql(O)]ll diverges forh=0 andg'—k!. We give[’l?v,flql(O)]ll for small ¢ and 6C=C,—Cy:
1 4C? (1+ a)?C28C2
[qulo)]u 1+ a)2 202 52 22 2 2
(1+ @) (1+a)?CEoC% S+ Sie? | [K,(1+ a)2CHS2+1]8C2+ K, S22+ h
SiChe®
+ — —_—
[Ko(1+ a)?ClSE+1]8C%+K,Sep?+h?

(C6)
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