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Multiple light scattering in anisotropic random media

Holger Stark* and Tom C. Lubensky
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104

~Received 1 July 1996!

In the last decade diffusing wave spectroscopy~DWS! has emerged as a powerful tool to study turbid media.
In this article we develop the formalism to describe light diffusion in general anisotropic turbid media. We give
explicit formulas to calculate the diffusion tensor and the dynamic absorption coefficient, measured in DWS
experiments. We apply our theory to uniaxial systems, namely, nematic liquid crystals, where light is scattered
from thermal fluctuations of the local optical axis, called director. We perform a detailed analysis of the two
essential diffusion constants, parallel and perpendicular to the director, in terms of Frank elastic constants,
dielectric anisotropy, and applied magnetic field. We also point out the relevance of our results to different
liquid crystalline systems, such as discotic nematics, smectic-A phases, and polymer liquid crystals. Finally, we
show that the dynamic absorption coefficient is the angular average over the inverse viscosity, which governs
the dynamics of director fluctuations.@S1063-651X~97!12301-7#

PACS number~s!: 61.30.2v, 42.70.Df, 78.20.Ci, 78.20.Bh
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I. INTRODUCTION

Dynamic light scattering~DLS! is one of our most pow-
erful probes@1–3# of the dynamics of materials such a
simple liquids, complex fluids, and liquid crystals. In typic
experiments, light incident on the sample scatters once,
its intensity is measured at a detector. Motion in the sam
or more generally fluctuations in the local dielectric consta
induce changes in the phase of scattered light, which g
rise to temporal fluctuations of the light intensity measured
the detector. Such experiments probe length scales of o
the inverse scattering wave vectorq21 and hence time scale
of order (qv)21 wherev is a typical velocity.

There are many materials such as colloids, emulsio
foams, and some liquid crystals that scatter light so stron
that the traditional single scattering analysis of DLS does
apply. In these materials, light undergoes many scatte
events before leaving the sample, and the transport of l
energy is diffusive rather than ballistic. The study of lig
transport in random or turbid media dates back to radia
transfer theory, first introduced as early as 1905 by Schu
@4#. These systems are characterized by a scattering m
free pathl , measuring the average distance a photon tra
before scattering, and a transport mean free p
l *5 l /^12cosqs&, measuring the distance beyond which t
direction of propagation is randomized, whereqs is the scat-
tering angle and the angular brackets denote an average
direction weighted by the differential scattering cross s
tion. For distances greater thanl * , light energy transport is
described by a diffusion equation with scalar diffusion co
stantD5 c̄l * /3, wherec̄ is the speed of light in the medium

There has been a resurgence of interest in light trans
in turbid and random media@5# because of its close conne
tion to the problem of Anderson localization@6# and electron
transport in disordered systems@7,8# and because of the de
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velopment of diffusing wave spectroscopy~DWS! @9–15#,
which permits useful information to be extracted from d
namic correlations of multiply scattered light. Cohere
backscattering, a manifestation of weak as opposed to st
or true Anderson localization, has been observed in a num
of experiments@16–22# and discussed in a number of the
retical papers@13,23–28#. DWS has opened up a whole ne
field of study. It provides heretofore unobtainable inform
tion about the dynamics of turbid media, including den
colloids @12#, sheared suspensions@29#, emulsions@30#, and
foams@31#. Because intensity variations measured at the
tector arise from phase shifts distributed over many scat
ing events, DWS detects dynamic phenomena at m
shorter time scales than normal DLS. This has permitted
measurement of hydrodynamic interaction contributions
the diffusion constant of colloidal particles@32# and the mea-
surement of shape fluctuation modes in tense emulsion d
lets @30#. Photon diffusion and DWS have also found app
cation in imaging of objects such as tumors in human tis
@33#.

With few exceptions@34–37#, both theory and experimen
have focused on diffusive transport and DWS in isotro
systems. There are, however, many turbid materials suc
conventional thermotropic and lyotropic liquid crystals, li
uid crystalline colloids @38,39# and emulsions, and als
muscle tissues that are anisotropic. This paper will develo
general treatment of diffusive light transport and DWS
anisotropic media with particular applications to nematic l
uid crystals. Though its inspiration is recent experimen
work on coherent backscatter@34,35#, its purpose is to
broaden the class of materials to which DWS and its offsh
applications such as imaging can be applied. A prelimin
account of this work and experiments on multiple scatter
in liquid crystals to which it applies were reported in Re
@40,41#. An alternative derivation of the results reported he
and a more detailed account of experiments appear in
@42#. A similar treatment of diffusive light transport an
DWS was developed by Tiggelen, Maynard, and Heider
@43#.

Anisotropic media differ from isotropic media in two im
portant ways:~1! The speed of light depends in general
both the polarization and direction of light propagation re
514 © 1997 The American Physical Society
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55 515MULTIPLE LIGHT SCATTERING IN ANISOTROPIC . . .
tive to anisotropy axes, and~2! scattering cross sections d
pend not only on the relative direction of incoming and sc
tered light rays but also on their direction relative
anisotropy axes. Diffusive transport in optically active is
tropic media with light speeds depending on the state
circular polarization has been studied@28#. Tiggelen has in-
vestigated anisotropic light diffusion induced by a magne
field H through a series expansion inH @37#. To our knowl-
edge, however, no thorough treatment of multiple light sc
tering in optically anisotropic media has been published.
electronic systems anisotropic diffusion has been stud
both theoretically and experimentally in the context of loc
ization @44,45#.

Optical anisotropy leads to anisotropic diffusive lig
transport. The equation governing the electric-field autoc
relation function
W(R,T,t)5^E(R,T1t/2)•«0E(R,T2t/2)& («0 denotes the
dielectric tensor! is

F ]

]T
2¹•D¹1m~ t !GW~R,T,t !5%~R,T!, ~1!

where D stands for the anisotropic diffusion tensor. T
quantitym(t) is the dynamic absorption coefficient measur
in DWS experiments@9–15#. It results from an average o
short-time dynamic correlations over angle and polarizati
We will provide explicit formulas forD andm(t) for general
anisotropic systems and then concentrate on nematic li
crystals as one example of a uniaxial system. With the p
ferred axis along the unit vectorn, the diffusion tensorD
reduces toD5D'11(D i2D')n^n where1 is the unit el-
ement. The dynamic absorption coefficientm(t) will turn out
to be the angular average of an inverse viscosity.

In this paper, we will restrict ourselves to the wea
scattering limit, and we will treat multiple scattering via th
Bethe-Salpeter equation in Sec. III. In isotropic lossless s
tems, the diffusion equation can be obtained exactly from
Bethe-Salpeter equation by considering only modes ass
ated with the isotropic and ‘‘vector’’ spherical harmoni
Y00 andY1m . In anisotropic systems, all spherical harmon
couple, and the calculation of diffusion coefficients involv
the inversion of an infinite dimensional matrix, which ca
only be accomplished approximately. We will, therefore,
content with a formal expression for the diffusion tensor
general anisotropic media. We will, however, introduce
sequence of approximations to obtain numerical values
the diffusion constants in nematic liquid crystals. For
nately, the first term in this sequence undergoes only a v
small modification in going to the second in this sequenc

Nematic liquid crystals present a difficulty that is not g
neric to anisotropic systems. Light scattering is from fluctu
tions in the direction of the principal axis of the dielectr
tensor, which is parallel to the local Frank directorn(r).
Fluctuations inn(r) diverge asq22 at small wave numbe
q in the absence of an external aligning magnetic fieldH.
This divergence leads to a vanishing scattering mean
path for extraordinary to extraordinary scattering in the lim
H→0. The diffusion constants are nonetheless well defi
and nonzero. For, ifl tends to zero, scattering takes pla
almost entirely in the forward direction. Thus, light has
-
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undergo a large number of scattering events before di
tional information is lost, and, as a result,l * is finite.

The outline of this paper is as follows. In Sec. II, w
review light propagation including the one-particle Gre
function in homogeneous anisotropic media. In Sec. III,
treat diffusive transport of light in general anisotropic ra
dom media. We introduce the structure factorBv(r,t) to de-
scribe fluctuations in the dielectric tensor, discuss elect
field autocorrelation functions and their meaning, and rel
them to the averaged two-particle Green function. We th
discuss the one- and two-particle Green functions in
weak-scattering limit and derive the diffusion equation f
light transport from the Bethe-Salpeter equation. We int
duce the approximation scheme for the diffusion tensor
look at the isotropic limit of our theory. Comments on DW
close Sec. III. Section IV applies the general results of
preceding sections to nematic liquid crystals. A review
relevant properties of nematic liquid crystals and light prop
gation in uniaxial media is followed by an explanation
dielectric tensor fluctuations in nematics. Finally, we discu
diffusive light transport and DWS in nematics. In particula
we provide explicit numerical calculations of the diffusio
coefficientsD i andD' as a function of Frank elastic con
stants, dielectric anisotropy, and external magnetic field,
point out their relevance for different liquid crystalline sy
tems, such as discotic nematics, smectic-A phases, and poly-
mer liquid crystals. The numerical calculations are summ
rized in Figs. 7–11. They are in excellent agreement w
recent experiments on the nematic compound 5CB by Je
Kao, and Yodh@41,42#. At the end we address the dynam
absorption coefficient.

II. LIGHT PROPAGATION IN A HOMOGENEOUS
MEDIUM WITH DIELECTRIC ANISOTROPY

Light propagation in anisotropic dielectric media is mo
complicated than it is in isotropic systems. In particular, t
electric field is not always transverse, and the speed of l
depends on polarization and direction of propagation. In t
section we review light propagation in anisotropic med
Following the work of Nelson and Lax@46#, we will intro-
duce sets of polarization vectors for the electric and diel
tric field that will prove to be very useful for our forthcomin
considerations. We start with Maxwell’s equations,

divD54p%ma, divB50,
~2!

curlE52
1

c

]B

]t
, curlH5

4p

c
jma1

1

c

]D

]t
,

where%ma and jma are, respectively, the macroscopic char
and current densities. We concentrate on a dielectric med
with

D5«0E and B5H, ~3!

and we assume that the dielectric tensor«0 is real and does
not depend on time. Then the energy-balance equation r

]

]t
u1divS5 jma•E, ~4!

where we have introduced the energy density
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516 55HOLGER STARK AND TOM C. LUBENSKY
u5
1

8p
~E•«0E1H•H! ~5!

and the Poynting vector

S5
c

4p
E3H. ~6!

Both quantities strongly vary in space and time. If we av
age over one period of oscillation, we obtain their averag
values ū and S. In the following we use complex wave
E5E0e

2 ivt andH5H0e
2 ivt whose averaged energy dens

ties and Poynting vectors are given b
ū5(E0•«E01H0•H0)/(16p) andS5c(E03H0)/(8p).
For vanishing sources%ma and jma, we obtain the homo-

geneous wave equation for the electric light fieldE(r,t):

Fcurl curl1«0
c2

]2

]t2GE~r,t !50. ~7!

Note that all solutions of Eq.~7! have to fulfill the transver-
sality condition for dielectric field waves, div«0E50, unless
the electric field is static or linear int. Introduction of the
plane-wave ansatz

E~r,t !5E0e~ k̂!exp@ i ~k•r2vt !# ~8!

in wave equation~7! leads to a generalized eigenvalue pro
lem

FPt~ k̂!2
1

n2
«0Ge~ k̂!50, ~9!

where

1

n2
5

v2

c2k2
~10!

and

Pt~ k̂!512 k̂^ k̂ ~11!

is the projection operator on the space perpendicular to
unit vectork̂5k/k. The symbol̂ stands for the tensor prod
uct: @ k̂^ k̂# i j5 k̂i k̂ j . The solutions to Eq.~9! provide us with
the characteristic light modes of the system determined
the refractive indexni( k̂)5ck/v and the polarization vecto
ei( k̂) of the electric field. We define the polarization vect
of the displacement field by

di~ k̂!5«0ei~ k̂!. ~12!

For each directionk̂, there exist two characteristic ligh
modes with associated polarizationsdi( k̂)' k̂. When a plane
wave with frequencyv enters the anisotropic medium,
splits into the two characteristic modes that travel with d
ferent speedsc/ni( k̂) and wave numbersk5vni /c. We also
find a third solution withn35` ande3( k̂)i k̂, corresponding
to a nonpropagating mode withv50. It violates k̂•d350
but is necessary to construct the complete Green function
wave equation~7! ~see below!.
-
d

-

e

y

-

or

The two sets of polarization vectors fulfill the biorthog
nality condition

di~ k̂!•ej~ k̂!5d j
i ~ i , j51,2,3!, ~13!

i.e., they are dual to each other like the basis vectors of
real and reciprocal lattice in a crystal. We will use both
them as convenient bases for our tensor quantities throu
out this paper. To prove condition~13! we notice that
Pt( k̂) and«0 are symmetric tensors and derive from Eq.~9!
the condition

S 1ni2 2
1

nj
2Dei•dj50, ~14!

from which Eq.~13! follows after an appropriate normaliza
tion. The vectorsd1 and d2 are perpendicular tok̂. Then,
again with Eq.~9! and the biorthogonality condition~13!,
one can show thatd1'd2. In Fig. 1, we summarize the ge
ometry for a given propagation directionk̂. Finally, we recall
that in general the refractive indices are calculated fr
Fresnel’s equation@47#:

(
i51

3
«̄ i k̂i

2

n22 «̄ i
50, ~15!

where «̄ i stands for the principal dielectric constants, t
eigenvalues of«0, andk̂i is the component of the unit vecto
k̂ along thei th eigenvector of«0. This equation is equivalen
to det@Pt( k̂)2«0 /n

2#50.
Consider nowE05E0ei( k̂) andH0, the amplitude of the

magnetic field wave, which are connected via Maxwell’s
lations:

k3E05
v

c
H0 and k3H052

v

c
«0E0 . ~16!

FIG. 1. The polarization vectorsei( k̂) and di( k̂) for a given
propagation directionk̂ in an anisotropic media.
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55 517MULTIPLE LIGHT SCATTERING IN ANISOTROPIC . . .
The second equation also follows from the first once Eq.~9!
is solved. For the nonpropagating mode (v50), H0, like
E0, is parallel tok̂. For the propagating modes,H0 is per-
pendicular tok̂ and«0E0. Using Eqs.~9! and~16! one shows
that electric and magnetic fields carry the same amoun
field energy (H0•H0*5E0•«0E0* ) and that the averaged en
ergy densityū of a light wave is

ū5
1

8p
E0•«0E0*5

1

8p
uE0u2. ~17!

Here the meaning of the scalarE0 becomes clear. It is not th
magnitude of the electric field, becauseei( k̂) is not a unit
vector, instead it basically stands for the square root of
energy density of the light mode. The Poynting vectorSdoes
not generally point alongk̂. Its projection onk̂, however,
fulfills the relation

k̂•S5
c

n
ū, ~18!

which is familiar for isotropic systems.
Finally, we calculate the Green functionG0(r2r8,t2t8)

for the wave equation~7!, which has a source term propo
tional to the time derivative ofjma. In Fourier space we hav

Fk2Pt~ k̂!2
v2

c2
«0GG0~k,v!521. ~19!

We expandG0(k,v) in the basis$ei( k̂)^ej ( k̂)% and calculate
its components by multiplying the last equation, respective
from left and right withel( k̂) and d

k( k̂). Using the eigen-
value equation~9! and the algebra for the polarization ve
tors, described above, we find thatG0(k,v) is diagonal:

G0~k,v!5 (
a51

2 Fv2

c2
2

k2

na
2~ k̂!

G21

ea~ k̂! ^ea~ k̂!

1
c2

v2e3~ k̂! ^e3~ k̂!. ~20!

The first term on the right-hand side represents the propa
ing part of the Green function. We will always, througho
this paper, indicate it by Greek indices. It acts on the tra
verse part of the source term. Nelson and Lax@48# have
calculated an expression for its far field in coordinate spa
which reduces to a spherical wave in an isotropic syst
The second term takes into account the longitudinal par
the source. In coordinate space, it is just a nonpropaga
d function. As we go on, it will become clear that we ca
neglect it within our approximation outlined in the next se
tion. We will therefore skip it when we represent tenso
through their components. We will also see that for
the tensors involved we can neglect the nondiagonal pa
Thus, whenever we use a Greek superscript or subscripta it
refers, respectively, to the basis ‘‘vector’’ea( k̂)^ea( k̂) or
da( k̂)^da( k̂) (a51,2). The last quantity we need is the i
verse Green function@G0(k,v)#

21, which we conveniently
represent as
of

e

,

at-

-

e,
.
f
ng

-
s
l
ts.

@G0~k,v!#215 (
a51

2 Fv2

c2
2

k2

na
2~ k̂!

Gda~ k̂! ^da~ k̂!

1
v2

c2
d3~ k̂! ^d3~ k̂! ~21!

by realizing that the unit tensor can be written as

15(
i j

d j
iei~ k̂! ^dj~ k̂!5(

i j
d i
jdi~ k̂! ^ej~ k̂!. ~22!

III. DIFFUSIVE LIGHT TRANSPORT IN ANISOTROPIC
RANDOM MEDIA

We now consider a dielectric medium in which the diele
tric tensor possesses a randomly fluctuating partd«(r,t) in
addition to the homogeneous term«0. We treatd«(r,t) as a
Gaussian random variable with variance characterized b

Bv~r,t !:5
v4

c4
^d«~r,t ! ^ d«~0,0!&~N!, ~23!

wherev is the frequency of light. The superscript (N) means
that we interchange the second and third indices in the te
productd«^ d« to defineBv: @Bv# i jkl}^d« ikd« j l &. We call
Bv(r,t) the structure factor of the system. It is measured
single light scattering experiments@1# and contains informa-
tion about the elastic and dynamic properties of a system

The electric light fieldE(r,t) obeys the inhomogeneou
wave equation

Fcurl curl1@«01d«~r,t !#
1

c2
]2

]t2GE~r,t !50, ~24!

where we have used an adiabatic approximation to p
d«(r,t) in front of the time derivatives. It is valid if
d«(r,t) varies on time scales much longer than the time
riod of light and the passage time of a light ray through
inhomogeneous medium.

Our task is to calculate measurable quantities from
~24!. A very general one is given by the spatial and tempo
autocorrelation function for the electric light field
^E(r1 ,t1)^E(r2 ,t2)&, which we write with the help of cente
of ‘‘mass’’ (R,T) and relative (r,t) coordinates:

W~R,r,T,t !5 KESR1
r

2
,T1

t

2D ^E* SR2
r

2
,T2

t

2D L .
~25!

It is a second rank tensor. Forr50 we derive the scalar

W~R,T,t !5 KESR,T1
t

2D •«0E* SR,T2
t

2D L , ~26!

which att50 is equal to the energy density of the light fie
when the small fluctuating partd« is neglected. TheT de-
pendence is, e.g., due to time-modulated light sources,
R describes variations of the energy density on long len
scales. FortÞ0,W(R,T,t) reflects the dynamics of the sca
tering medium through its dependence on the structure fa
Bv(r,t). It is measured in dynamic light scattering expe
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518 55HOLGER STARK AND TOM C. LUBENSKY
ments either in single scattering@1# or with DWS @49#. We
will see below that the Fourier transform with respect tor,
W(R,k,T,t), is diagonal in the basis$ea( k̂)^eb( k̂)% on
length (R) and time (T) scales much longer than the wav
length and time period of light,

W~R,k,T,t !'(
a

Wa~R,k,T,t !ea~ k̂! ^ea~ k̂!. ~27!

For t50 we can, therefore, interpretWa(R,k,T,t) as the
energy density of a light wave with wave vectork and po-
larizationea( k̂). To clarify this interpretation we look at th
Fourier transform

E d3Rd3rdTdtW~R,r,T,t !ei ~2K•R2k•r1VT1vt !

5 KES k1
K

2
,v1

V

2 D ^E* S k2
K

2
,v2

V

2 D L . ~28!

SinceR and T describe variations on long scales we ha
K!k andV!v. Thus the amplitudesE(k6K/2,v6V/2)
are strongly peaked aroundv andk, which can be identified
respectively, with the frequency and wave vector of the lig
waves in the medium.

To calculate the autocorrelation functionW(R,r,T,t) for
special light sourcesW0(R,r,T,t) and/or given boundary
conditions, we need the averaged ‘‘two-particle’’ Gre
function

F5^GR
^GA&~N!, ~29!

whereGR andGA denote the retarded and advanced Gre
functions withGA5@GR#* . Then

W~1!5E d2F~1,2!W0~2! ~30!

~for notation see Appendix A!. In the second subsection w
will derive the diffusion pole ofF, i.e., that part ofF that
corresponds to a diffusion equation forW(R,k,T,t) in the
variablesR andT. It governs the propagation of light energ
at long length and time scales. The timet will appear in an
absorption term of the diffusion equation, which is zero
t50. In the first subsection we calculate the averaged
tarded and advanced one-particle Green functions, which
need for the derivation ofF.

A. The averaged one-particle Green function

The one-particle Green functions^GR& and ^GA& follow
from Dyson’s equation@50#, which we give in a formal no-
tation:

^GR/A&5G01G0S
R/A^GR/A&. ~31!

~In the following we will use a coordinate-free representat
for tensors and their contractions which we explain here
A andB are second rank tensors so isAB with components
@AB# i j5(kAikBk j . For fourth rank tensorsC andD we form
a tensor CD of the same rank with componen
@CD# i jkl5(mnCi jmnDmnkl . Finally,CA is a second rank ten
t

n

r
e-
e

n
If

sor and has components@CA# i j5(klCi jklAkl .) We have in-
troduced the retarded and advanced second-rank-tensor
operatorsSR andSA. In the weak-scattering approximation
where the elements of the structure factorBv(r,t50) are
assumed to be much smaller than 1, these mass operato
proportional toBv(r,t50) and can be written in frequenc
space as

SR/A~r,v!5Bv~r,t50!^GR/A&~r,v!. ~32!

Figure 2 gives a diagrammatic representation
SR/A(r,v).

Finally, in momentum space, we get from Eq.~31!,

^GR/A&~k,v!5@G0
21~k,v!2SR/A~k,v!#21. ~33!

The inverse Green functionG0
21(k,v) is diagonal in the ba-

sis $di( k̂)^dj ( k̂)%, andSR/A(k,v) causes a small perturba
tion. From perturbation theory we know that to zeroth ord
in SR/A the eigenvectors ofG0

21(k,v)2SR/A(k,v) are un-
changed, whereas to first order inSR/A the diagonal elements

@SR/A~k,v!# i5ei~ k̂!•SR/A~k,v!ei~ k̂! ~34!

contribute to the eigenvalues of^GR/A& renormalizing the
wave numbers (v/c)ni of the light modes. The significan
effect of SR/A comes from its imaginary part. Then, in it
final form the propagating part of the Green functions rea

^GR/A&~k,v!' (
a51

2

@^GR/A&~k,v!#aea~ k̂! ^ea~ k̂! ~35!

with

@^GR/A&~k,v!#a5Fv2

c2
2

k2

na
2~ k̂!

7
iv

cna~ k̂!l a~ k̂,v!
G21

.

~36!

We have introduced the scattering mean free pathl a( k̂,v) of
the light mode$kauea( k̂)% which travels with a wave vecto
ka5(v/c)nak̂ and polarizationea( k̂):

l a~ k̂,v!5F2
c

v
na~ k̂!@ ImSR~ka,v!#aG21

. ~37!

FIG. 2. The mass operatorsSR/A(r,v) in the weak-scattering
approximation consist of two scattering events from inhomoge
ities in the dielectric tensor, which are tied together by spatial c
relations@Bv(r,t50)# and the averaged propagators^GR/A&(r,v)
of the electric field.
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To arrive atl a( k̂,v), we used a coherent potential approx
mation replacing the argumentk of @SR/A(k,v)#a by the
wave vectorka5(v/c)nak̂ of the light modes whereG0
diverges. ImSR follows from Eq.~32! using the momentum
shell approximation

@ Im^GR/A&~k,v!#a'2
p

2

c

v
na~ k̂!d„~v/c!na~ k̂!2k…

~38!

valid in the limit SR→0. We finally obtain

l a~ k̂,v!5Fp

2
na~ k̂! (

b51

2 E
q̂b

@Bkaqb
v

~ t50!#abG21

, ~39!

where we sum over all possible scattering events of the
coming light mode$kauea( k̂)% into modes$qbueb( k̂)%. The
single-scattering event is described by the structure facto

@Bkaqb
v

~ t50!#ab5
v4

c4
^uea~ k̂!•d«~qs,0!eb~ q̂!u2&, ~40!

which is proportional to the differential scattering cross s
tion. We also introduced the scattering vector

qs5
v

c
~nak̂2nbq̂!. ~41!

In Eq. ~39! and throughout this paper, we use a shortha
notation for angular integration:

E
q̂b
•••5E dVq

~2p!3
nb
3~ q̂!•••. ~42!

We point out that the scattering mean free pathl a( k̂,v) now
depends on the directionk̂ and the polarizationea( k̂) of the
light mode. Following the work of Nelson and Lax@48#, it is
straightforward to show thatl a( k̂,v) determines an exponen
tial decay of the far field of̂GR&(R,v) traveling in the di-
rection k̂ with polarizationea( k̂). In our analysis, we have
neglected the off-diagonal components ofSR/A, so that the
polarization vectors of our light rays are identical to those
the homogeneous medium. We will use this approximat
in the next subsection. We conclude with the definition of
two quantities

DGk
v~K,V!5^GR&~k1 ,v1!2^GA&~k2 ,v2!, ~43!

and

DSk
v~K,V!5SR~k1 ,v1!2SA~k2 ,v2!, ~44!

where

k65k6K/2 and v65v6V/2. ~45!

We will use both of these in the following, especially whe
K50 andV50:

DGk
v~0,0!52i Im^GR&~k,v! ~46!

and
-

-

d

f
n
e

DSk
v~0,0!52i ImSR~k,v!52

v

c

2i

na~ k̂!l a~ k̂,v!
. ~47!

B. The averaged two-particle Green function

The averaged two-particle Green functionF obeys the
Bethe-Salpeter equation@50#

F5@^GR& ^ ^GA&#~N!1@^GR& ^ ^GA&#~N!UF, ~48!

whereU stands for the irreducible vertex function or inte
sity operator, which in the weak-scattering approximati
equals the structure factorU'B. The Bethe-Salpeter equa
tion is best handled in momentum and frequency space. W
all arguments, the Green function isFkk8

v (K,V,t) ~see Ap-
pendix A!. The variablesK, V correspond to the center-of
‘‘mass’’ coordinatesR, T, introduced in the introduction to
this section, and the wave vectorsk, k8 to relative coordi-
natesr, r8. The superscriptv is the light frequency, and the
t dependence explicitly comes from the structure fac
Bkk8

v (t). The explicit form of the Bethe-Salpeter equatio
reads

E d3k1
~2p!3

@1kk1
~4!2fk

v~K,V!Bkk1
v ~ t !#Fk1k8

v
~K,V,t !

5fk
v~K,V!1kk8

~4! , ~49!

which we derive in Appendix A. In the last equation we ha
introduced an abbreviation for the tensor product of the
eraged one-particle Green functions:

fk
v~K,V!5@^GR&~k1 ,v1! ^ ^GA&~k2 ,v2!#~N!, ~50!

and a shorthand notation1kk8
(4) for the combination of thed

function and the unit element of fourth rank tensors:

@1kk8
~4!

# i jkl :5~2p!3d~k2k8!~d ikd j l1d i ld jk!/2. ~51!

Here i , j , k, and l are Cartesian indices. The Bethe-Salpe
equation~49! can be solved formally by iteration, leading t
a sum of ladder diagrams~see Fig. 3!. The multiple integrals
and the sum can be done analytically ford-function correla-
tions forK→0, and the solution represents the diffusion po

FIG. 3. The two-particle Green functionF as a sum of ladder
diagrams.fk

v(K,V) propagates two electric field modes with wav
vectorsk18 andk28 Both are scattered by the same inhomogeneity
the dielectric tensor described by the structure factorBkk8

v (t) for the
scattering vectork2k8.
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520 55HOLGER STARK AND TOM C. LUBENSKY
of F. For the anisotropic, long-range correlations of o
problem this procedure is not possible. Vollhardt and Wo¨lfle
@51# derived the diffusion pole for isotropic electron tran
port directly from Eq.~49!, and MacKintosh and John@15#
applied their method to light. In the anisotropic case one
to be more careful, as Wo¨lfle and Bhatt showed for electron
@44#. We will proceed in a similar way, however, our pro
lem is more difficult because we have to deal with the d
ferent polarizations of light.

Let Ck
(n)(K,V,t) and l (n)(K,V,t) be, respectively, the

nth eigenvector and eigenvalue of the integral operator
Eq. ~49!,

E d3k1
~2p!3

@1kk1
~4!2fk

v~K,V!Bkk1
v ~ t !#Ck1

~n!5l~n!Ck
~n! ,

~52!

andCk
(n)(K,V,t) the eigenvectors of the Hermitian adjoi

operator@52#. Then it is straightforward to show@15#, with
the aid of the completeness relation

(
n

Ck
~n!

^ Ck8
~n!

51kk8
~4! , ~53!

that

Fkk8
v

~K,V,t !5(
n

Ck
~n!

^ Ck8
~n!

l~n! fk8
v

~K,V! ~54!

solves the Bethe-Salpeter equation. WhenK50 and
V5t50, the quantityDGk

v(0,0), defined in Eq.~43!, is an
eigenvector of Eq.~52! with eigenvaluel (0)(0,0,0)50. To
prove this statement we use a special case of one of the W
identities~see Appendix B1!,

DSk
v~0,0!5E d3k8

~2p!3
Bkk8

v
~ t50!DGk8

v
~0,0!, ~55!

and the relation

DGk
v~0,0!5fk

v~0,0!DSk
v~0,0!. ~56!

The first equation is obvious from the definition of the ma
operator, and the second one is given in Appendix B2.
have identified the diffusion pole, as we shall explicitly s
soon. The result is valid beyond the weak-scattering appr
mation and based on the Ward identities@51#. All other ei-
genvalues of Eq.~52! are positive, and in the real-space c
ordinateR, they give exponentially decaying contributions
Fkk8

v (K,V,t), which are not important at long length scal
@15#.

The diffusion approximation follows when we calcula
l (0)(K,V,t) with the help of perturbation theory in the lim
K,V,t→0. First, we have to get the eigenvalue equation
this limit. To proceed we need the following equation, whi
we derive in Appendix B2:
r

-

as

f-

of

ard

s
e
e
xi-

-

s

in
h

@DGk
v~K,V!#a'@ fk

v~0,0!#aaS @DSk
v~0,0!#a

2
]@G0

21#a

]k
•K2

2v

c2
V D . ~57!

As usual, the Greek superscript or subscripta refers,
respectively, to the basis ‘‘vectors’’ea( k̂)^ea( k̂) or
da( k̂)^da( k̂). Equation ~57! gives @DGk

v(K,V)#a to first
order inK, V, andS. It shows clearly where the wave vect
K and the frequencyV come in. Now, we formulate eigen
value equation~52! in components, choosingK50 and
V50. Then, we apply the last equation and arrive at

S @DSk
v~0,0!#a2

]@G0
21#a

]k
•K2

2v

c2
V DCk

a

2@DGk
v~0,0!#a(

b
E d3k1

~2p!3
@Bkk1

v ~ t !#abCk1
b ~58!

5l~K,V,t !@DSk
v~0,0!#aCk

a

as the eigenvalue equation, which is correct up to first o
in K, V, andS. In a next step we use the ansatz

Ck
a}@DGk

v~0,0!#aF C̃0p1(
i51

. . .

C̃iw i
a~ k̂!G ~59!

for the eigenfunctions to turn the eigenvalue equation in
matrix equation. The first factor on the right-hand side for
k to equal (v/c)na( k̂) in the momentum shell approxima
tion:

@DGk
v~0,0!#a'2 ip~c/v!na~ k̂!dS v

c
na~ k̂!2kD . ~60!

The amplitudeC̃0 represents the zeroth eigenvector, and
second term involves a complete set of real basis funct
wi( k̂) on the unit sphere and for the space spanned
e1^e1 and e2^e2. We will comment below on how to
choose these basis functions. Keeping only dominant te
in the smallV, K, and t limit, we can write the eigenvalu
equation in matrix form as

F 2n3pc
@2 iV1m~v,t !# 2 i @G~K!# t

2 iG~K! B
G F C̃0

A G
5l~K,V,t !F S S 0

t

S0 S1
GF C̃0

A G . ~61!

The matrix B basically represents the structure fac
@Bkaqb

v (0)#ab in our chosen basis,

@B# i j5p(
a,b

H E
k̂a
E
q̂b

@w i
a~ k̂!w j

a~ k̂!2w i
a~ k̂!w j

b~ q̂!#

3@Bkaqb
v

~0!#abJ . ~62!
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The vectorG with components

@G~K!# i5p(
a

E
k̂a
na~ k̂!

]@G0
21#a

]k U
k̂

•Kw i
a~ k̂! ~63!

is linear inK. Another important term is the coefficient

m~v,t !5
cp3

2n3
(
a,b

E
k̂a
E
q̂b

@Bkaqb
v

~0!2Bkaqb
v

~ t !#ab ,

~64!

where

n35
1

8p(
a

E dVk na
3~ k̂!. ~65!

For reasons that will become clear shortly, we will refer
m(v,t) as adynamic absorption coefficient. It is an average
over dynamical modes that decay in time. As a result
increases from zero with increasingt.0. Finally we have
the constant

S5p3(
a,b

E
k̂a
E
q̂b

@Bkaqb
v

~0!#ab

52p
c2

v2(
a

E d3k

~2p!3

~66!

3@DSk
v~0,0!#a@DGk

v~0,0!#a. ~67!

The second equation above states thatS is proportional to
the normalization factor of the eigenfunctionDGk

v(0,0), with
DSk

v(0,0) being the eigenfunction of the Hermitian conj
gated problem. The vectorS0 and the matrixS1 are irrel-
evant here. ForK,V,t50 the zeroth eigenvaluel (0) corre-
sponds to the eigenvector@1,0,0, . . .# in the eigenvalue
equation ~61!, and we want to know how it evolves for sma
K, V, and t. The vectorG(K) couples the 00 element wit
the matrixB. The coupling can be removed by an orthogon
transformation with

U5F 1 i @G~K!# tB21

2 iB21G~K! 1 G , ~68!

which essentially renormalizes the 00 element. Calcula
l (0) from the transformed system to leading order inK2

shows thatl (0)S is equal to the renormalized 00 element,

l~0!5
2n3

cS F2 iV1m~v,t !1
pc

2n3
G~K!•B21G~K!G .

~69!

Now, we are ready to write down the diffusion approxim
tion of the averaged two-particle Green function from E
~54!,

Fkk8
v

~K,V,t !'
1

N

DGk
v~0,0! ^ DGk8

v
~0,0!

2 iV1m~v,t !1K•D~v!K
~70!

with
it

l

g

r

-
.

K•D~v!K5
c

2n3
G~K!•B21G~K! ~71!

andN522n3v2/(pc3). Whenm(v,t)50 the Green func-
tion Fkk8

v (K,V,t) possesses a simple diffusion pole with
anisotropic diffusion tensorD(v). In addition we have the
dynamic absorption coefficientm(v,t), which forms the ba-
sis of DWS. We will discuss it in the next subsection.

From Eq.~71!, it is clear that the problem of calculatin
D(v) reduces to the problems of calculatingG(K) and the
inverse matrixB21. If we had at our disposal function
wi( k̂), that diagonalizeB, our task would be simple:

K•D~v!K5
c

2n3
(
i

@G~K!# i
2

@B# i i
. ~72!

Unfortunately these functions are difficult to find in anis
tropic systems, and we are reduced to seeking usable
proximation schemes. One scheme is to choose funct
wi( k̂) so that only a few components ofG(K), say @G(K)# i
for i51,2, are nonzero. Then, if the off-diagonal compone
of @B# i j , coupling j for j.2 to i for i51,2, are small,
@G(K)# i@B21# i j @G(K)# j can be approximated by using on
the i , j51,2 submatrix of@B# i j to calculate@B21# i j . We will
use this approach in numerical calculations ofD(v) in nem-
atic liquid crystals in the next section.

To test our theory we apply it to isotropic systems. W
concentrate on the case where fluctuations in the dielec
tensor originate from density fluctuations only:d«}d%1.
Then the components of the structure factor assume the f

@Bkaqb
v

~0!#ab5@ea~ k̂!•eb~ q̂!#2Bv~cosqs!, ~73!

where Bv(cosqs) solely depends on the scattering ang
qs . In isotropic systems, all the polarization vectors perp
dicular tok̂ are equivalent, and the diffusion constant shou
not depend on the special choice we make. Therefore, to
the factor @ea( k̂)•eb(q̂)#

2, we can add integrations
*df1 /(2p)*df2 /(2p) in the formula forB. The angles
f1 andf2, respectively, describe rotations of the polariz
tion vectors aboutk̂ and q̂. The integration overf1 andf2
for a fixed scattering angleqs is straightforward, and we
obtain

E df1

2p E df2

2p
@ea~ k̂,f1!•eb~ q̂,f2!#

25
11cos2qs

4«0
2 ,

~74!

where the dielectric constant«0 comes in through the nor
malization of the polarization vectors. With this trick we a
able to show thatB is essentially diagonalized by spheric
harmonics.~Our formulas are written for real basis functio
a generalization to complex ones is straightforward.! As ba-
sis functions we choosew1lm( k̂)5@Ylm(q,w),Ylm(q,w)#
and w2lm( k̂)5@Ylm(q,w),2Ylm(q,w)# with cosq5 k̂•K̂.
We also use the addition theorem,Pl(cosqs)
}(mYlm* (q,w)Ylm(q8,w8) @53#, and arrive at @B#g8 l 8m8

g lm
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522 55HOLGER STARK AND TOM C. LUBENSKY
}dgg8d l l 8dmm8. The only nonzero element ofG is
@G#110522«0K/A3, and we finally find the formula for the
diffusion constant:

D5
16

3
pc0F E dcosqs~12cosqs!

3~11cos2qs!B
v~cosqs!G21

, ~75!

wherec0 stands for the speed of light in the system. Co
pared to the scalar case we have an additional fa
11cos2qs . B

v(cosqs) alone describes a scattering proce
with incoming and outgoing polarization perpendicular to t
scattering plane@vertical-vertical~VV ! scattering#, whereas
cos2qsB

v(cosqs) belongs to scattering with polarizations
the plane@horizontal-horizontal~HH! scattering# @1#. In a
group theoretical language@Bkaqb

v (0)#ab transforms under a
high-dimensional identity representation of SO~3!. The rela-
tion @B#g8 l 8m8

g lm }d l l 8dmm8 then means that we have decom
posed@B#g8 l 8m8

g lm via the irreducible representations of SO~3!.
For less symmetric phases, like a nematic liquid crystal,
can at least partially diagonalizeB with the help of group
theory. The relevant symmetry group D`h has only one-
dimensional representations induced by the functi
exp(imw), wherew is the azimuthal angle around the sym
metry axis. DecomposingB with the help of spherical har
monics gives@B#g8 l 8m8

g lm }dmm8, where differentl and l 8 now
couple to each other~see next section!.

The numerator of the Green function in Eq.~70! contains
an interesting effect. The second factorDGk8

v (0,0) collects
the light sources or the incoming light waves. The first fac
determines the energy densityWa(R,k,T,0) of an outgoing
light wave independent of the sources. This means that in
diffusion approximation the outgoing light loses all its co
relations with the light sources. Integrating@DGk8

v (0,0)#a

over the wave numberk shows that the ratio for the energ
densitiesWa(R,k̂,T,0) in polarization states 1 and 2
@n1( k̂)/n2( k̂)#

3. Experiments measure light intensities.
Eq. ~18! we learned that only the projection of the Poynti
vectorSa on k̂ is simple:Sa

• k̂5(c/na)W
a(R,k̂,T,0). Its ra-

tio for the output polarizations 1 and 2 is@n1( k̂)/n2( k̂)#
2,

which gives the ratio of the output intensities when the Po
ting vectors are parallel tok̂. This is the case for light trav
eling along the principal axes of the dielectric tensor. T
Green function in Eq.~70! suggests that there is a diffusio
equation for each light wave with directionk̂ and polariza-
tion a. This does not mean that we have additional co
served quantities besides the energy density. It only me
that after randomizing the incoming light the distribution
the light modes in the light field stays the same.

C. Diffusing wave spectroscopy

If we sum over the two polarization states and integr
over all wave vectorsk the Green function in Eq.~70! is
equivalent to a diffusion equation for the scalar tim
correlation functionW(R,T,t), introduced in Eq.~26!,
-
or
s

e
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e

-

F ]

]T
2¹•D~v!¹1m~v,t !GW~R,T,t !5%~R,T!. ~76!

This equation is the basis of DWS@14#. Solving it for special
boundary conditions and sources%(R,T), which depend on
experimental arrangements, givesW(R,T,t) in terms of the
dynamic absorption coefficientm(v,t). In our derivation of
the diffusion pole we had to restrict ourselves to timest with
@Bkaqb

v (0)2Bkaqb
v (t)#ab!@Bkaqb

v (0)#ab . In this time range
we expect to be able to perform a Taylor expansion int that
gives a linear time dependence form(v,t):

m~v,t !5m0t. ~77!

The constantm0 reflects some averaged dynamical propert
of the system. For the diffusion of particles in colloidal su
pensions,m052DBv2/( l * c), whereDB is the self-diffusion
constant of the particles@49#. The condition just imposed on
t means that DWS probes the dynamics of a system o
much shorter time scale than single light scattering do
which requires times where@Bkaqb

v (t)#ab has already de-
cayed considerably. DWS, therefore, offers the possibility
studying the validity of the dynamical description of the sy
tem on short time scales. This was done for colloidal susp
sions by Kaoet al. @32#, who studied the Brownian motion
of single particles at short times where the mean-squ
diplacement is not simply proportional tot @49#. As a result,
m(v,t) does not follow the linear time law of Eq.~77!. Ex-
perimentalists prefer a different picture for DWS, which th
have developed for colloidal suspensions@49#. They sum up
all possible light paths in the scattering medium to arrive
the time correlation function after some averaging procedu
We will show here that our approach is totally equivalent
this picture. However, it has the advantage that it autom
cally tells us how to perform this averaging procedure.

DWS experiments are usually performed with continuo
light sources and the diffusion equation reduces to

@m~v,t !2¹•D~v!¹#W~R, . . . ,t !5%~R, . . . !. ~78!

We can rewrite this equation as the Laplace transform o
problem, where the source is a light pulse,

F ]

]t
2¹•D~v!¹GP~R,t!5d~t!%~R, . . . ! ~79!

with

W~R, . . . ,t !5E
20

`

P~R,t!exp@2m~v,t !t#dt. ~80!

The lower limit20 means a small negative timet in order
to pick up thed function. We can interpretP(R,t) ~after an
appropriate normalization! as the probability that light, emit-
ted by the source at timet50, arrives at the detector at poin
R after a time t. Then the time correlation function
W(R, . . . ,t) follows after a summation over all light path
where each light path contributes a factor exp@2m(v,t)t# to
the decay ofW(R, . . . ,t). For isotropic systemst is directly
connected to the path lengths5ct/n of light and P(R,t)
also represents the path-length distribution. The exact fo
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55 523MULTIPLE LIGHT SCATTERING IN ANISOTROPIC . . .
of P(R,t) depends on the choice of the light source and
boundary conditions@49#, which we do not address here.

IV. LIGHT DIFFUSION IN NEMATIC LIQUID CRYSTALS

The nematic liquid crystalline phase consists of rodl
organic molecules that tend to align parallel to each other
that show no long-range positional order of their centers
mass. The local average direction of the molecules is
scribed by a unit vectorn(r,t) called director. It appears in
the local dielectric tensor

«~r,t !5«'11D«@n~r,t ! ^n~r,t !#, ~81!

where «' and « i are the dielectric constants for electr
fields, respectively, perpendicular and parallel to the direc
and whereD«5« i2«' stands for the dielectric anisotropy
The energetically favored state of a nematic phase is a
form director fieldn(r,t)5n0 throughout the sample. Its dis
tortion costs energy, which can be calculated from the Fra
Oseen-Zo¨cher free energy@54#:

F@n#5
1

2E @K1~divn!21K2~n•curln!21K3~n3curln!2

2Dx~n•H!2#d3r . ~82!

There are three characteristic distortions, called splay (K1),
twist (K2), and bend (K3), whereK1, K2, andK3 are the
Frank elastic constants. We also include a magnetic-fi
term withDx5x i2x' the anisotropy of the magnetic su
ceptibility. If Dx.0 an alignment of the director parallel t
the fieldH is favored. Even in a uniformly aligned samp
there exist thermally induced fluctuations of the director:

n~r,t !5n01dn~r,t !. ~83!

They lead to fluctuations in the local dielectric tensor a
hence scatter light. This is the physical phenomenon
which we want to calculate the diffusion approximation
light. In order to apply the formulas of the preceding secti
we have to look first at the light propagation in uniax
media. Then we need to calculate the structure factor, a
ciated with the director fluctuations, which governs t
single-light-scattering event.

A. Light propagation in uniaxial media

Let us, for a moment, suppress the fluctuations of
director and look at a homogeneous medium with a unia
dielectric tensor

«05«'11D«@n0^n0#. ~84!

The equilibrium valuen0 of the director is also called th
optical axis because it establishes a special axis for lig
propagation. The two light modes follow from solving th
eigenvalue equation~9!. They are well described in the lit
erature@47#. We mainly summarize the results here, intr
duce some notation, and perform an interesting varia
transformation for later use.

One light mode is immediately obvious. Its polarizatio
vectorse2( k̂) andd

2( k̂) are both perpendicular ton0 and k̂
e

ut
f
e-

r

i-

k-

ld

d
r

,

o-

e
l

t

le

with a refractive indexn25A«'. Since it behaves as in a
isotropic system, it is named theordinary light mode. We
choosen0 parallel to thez axis and writek̂ in spherical
coordinates:

n05F 00
1
G and k̂5F sinqkcoswk

sinqksinwk

cosqk

G . ~85!

Then the ordinary light ray is represented by

n25A«' and e2~ k̂!5
1

n2F 2sinwk

coswk

0
G . ~86!

In the extraordinary light mode, the refractive index de
pends onk̂, and the polarization vectore1( k̂) is generally not
perpendicular tok̂. It follows from e1( k̂)5«0

21d1( k̂) where
the polarization vectord1( k̂) is determined byd1( k̂)'d2( k̂)
andd1( k̂)' k̂. The refractive index can be calculated from t
eigenvalue equation~9! or Fresnel’s equation~15!:

n1~ k̂!5n2ñ1~ k̂! with ñ1~ k̂!5F 11a

11acos2qk
G1/2,

~87!

where we have introduced the relative dielectric anisotro
of the system,

a5D«/«' . ~88!

Equation ~87! does not represent the most symmetric fo
for n1( k̂), but we found it useful for our calculations. F
nally, we get

e1~ k̂!5
ñ1~ k̂!

n2 S cosqkF coswk

sinwk

0
G2

sinqk

11aF 00
1
G D . ~89!

In the structure factor,k̂ always appears together with th
refraction index. For the extraordinary mode we, therefo
replace the angular variables cosqk and sinqk by an equiva-
lent set,

Ck :5ñ1~ k̂!cosqk and Sk :5 ñ1~ k̂!sinqk , ~90!

in which the refraction index takes the form

ñ1~ k̂!5A11a~12Ck
2!. ~91!

The ‘‘trigonometric’’ identity,

Sk
21~11a!Ck

2511a ~92!

is valid. The new coordinateCk ranges from21 to 1 and
contains the same information as cosqk . Thus, we can
choose, e.g., spherical harmonics as basis functions on
unit sphere with cosqk replaced byCk . The usefulness of
Ck appears when we calculate its differential with respec
cosqk :
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~11a!dCk5 ñ 1
3~ k̂!dcosqk . ~93!

The differentialdCk absorbs the factorñ 1
3( k̂), which always

comes with our integrals thus making them easier:

E
k̂1
•••5E dVk

~2p!3
n1
3~ k̂!•••5n2

3~11a!E dCkdwk

~2p!3
•••.

~94!

Alternatively, we can say that we have constructed a co
plete set of basis functions in the variables cosqk and wk

with respect to the weight functionñ1( k̂). In the following
we will also use the notationCk5cosqk andSk5sinqk for
ordinary light modes.

B. Structure factor for director fluctuations

Here we will derive the structure factor for director flu
tuations. To begin we recall the general form of the tim
dependent structure factor for light scattering in an ani
tropic dielectric,

@Bkaqb
v

~ t !#ab5
v4

c4
^ea~ k̂!•d«~qs ,t !eb~ q̂!

3@ea~ k̂!•d«~qs,0!eb~ q̂!#* &, ~95!

whereqs5(v/c)(nak̂2nbq̂) stands for the scattering vecto
We first need the Fourier componentd«(qs ,t) of the fluctu-
ating part of the dielectric tensor. We inse
n(r,t)5n01dn(r,t) into «(r,t) of Eq. ~81! and collect the
first-order terms indn(r,t). After a Fourier transformation
we arrive at

d«~qs ,t !5D«@n0^ dn~qs ,t !1dn~qs ,t ! ^n0# ~96!

with dn(qs ,t) the amplitude of a director mode. It has on
two components since the director is a unit vector. Furth
more, for small fluctuations,dn is perpendicular ton0. An
appropriate basis fordn(qs ,t), as shown in Fig. 4, consist
of a unit vectorû1(qs), lying in the plane defined byn0 and
qs , and a second one,û2(qs), perpendicular to this plane:

dn~qs ,t !5dn1~qs ,t !û1~qs!1dn2~qs ,t !û2~qs!. ~97!

Next we need the temporal autocorrelation function of
director modes@54#, which is rather complex. We state it an
then explain the individual terms:

FIG. 4. Basis vectorsû1(qs) and û2(qs) for given directorn0
and wave vectorqs .
-

-
-

r-

e

^dn~qs ,t ! ^ dn* ~qs,0!&

5 (
d51

2
kBT

Kd~qs!
expF2

Kd~qs!

hd~qs!
t G ûd~qs! ^ ûd~qs! ~98!

with

Kd~qs!5Kdq'
21K3qi

21DxH2, ~99!

whereq' and qi are the components ofqs , perpendicular
and parallel ton0. The chosen basis fordn(qs ,t) provides
the normal coordinates, because the correlation functio
already diagonal. The free energy of one director mode
lows from the Frank-Oseen-Zo¨cher free energy~82! as
Kd(qs)udnd(qs ,t)u2. For a general vectorqs it is either com-
posed of splay and bend (d51) or twist and bend distortions
(d52). The factorkBT/Kd(qs) results from the equipartition
theorem giving the mean-square amplitude of each mo
The dynamics of the director modes is described by
Leslie-Erickson equations@55#. They combine the Navier-
Stokes equation for a uniaxial media with dynamical eq
tions for the director. A detailed analysis@55# shows that
director modes are diffusive with a relaxation frequen
given by the quotient of elastic@Kd(qs)# and viscous
@hd(qs)# forces. This is the origin of the exponential factor
the correlation function. The viscosityhd(qs) is a combina-
tion of several Leslie viscosities, which we will address
Sec. IV D. We neglect a fast relaxing part that comes fr
the coupling between the director and the fluid motion.
nally we are able to write down the structure factor

@Bkaqb
v

~ t !#ab5~D«!2kBT
v4

c4 (
d51

2
N~ea ,eb ,ûd!

Kd~qs!

3expF2
Kd~qs!

hd~qs!
t G ~100!

with

N~ea ,eb ,ûd!5@~n0•eb!~ ûd•ea!1~ ûd•eb!~n0•ea!#2

~101!

a geometrical factor. It has two interesting implication
First, there exists no scattering of an ordinary light ray in
an ordinary light ray becausee2'n0, and thereforeN50.
Second, forward and backward scattering alongn0 is always
forbidden. The other terms of@Bkaqb

v (t)#ab are familiar from
the previous discussion. The scattering mean free p
l a( k̂,v), defined in Eq.~39!, has been already discussed
detail by two groups@56,57#. Its dependence onk̂ and polar-
ization was calculated by Val’kov and Romanov@56#. We
just stress one point. The structure factor diverges
H50 and qs→0, and we expect the scattering mean fr
paths to be zero in an infinite medium. Butqs50 can only
occur in scattering events where the extraordinary polar
tion is preserved. Hence, only the scattering mean free p
l 1( k̂,v) of an extraordinary light ray is zero. In Appendix
we give@Bk1q1

v (0)#11 for q
1→k1 ~the notation we use there i

explained below!. From this form it is obvious that
l 1

21( k̂,v) diverges weakly like2 ln@DxH2/(K3n2
2v2/c2)#

for magnetic fields much smaller thanAK3 /Dxn2v/c. The



s

n-
g

m

al
n-
n

d

ct

n

rt

te
io
an

ic
on

of

po-

r-

t-
ary

.

sis

e

ith

i-
ive
s

l
n-

55 525MULTIPLE LIGHT SCATTERING IN ANISOTROPIC . . .
explicit form of the structure factor is very complex becau
it explicitly depends on the direction of the incoming (k̂) and
outgoing (q̂) light through the geometrical factor. We me
tion some symmetry properties that facilitate its handlin
The first two are quite obvious:

@Bkaqb
v

~0!#ab5@Bqbka
v

~0!#ba ~102!

and

@Bkaqb
v

~0!#ab5@B2ka2qb
v

~0!#ab . ~103!

The structure factor has to reflect the symmetry of the ne
atic phase described by the group D`h . For example, it has
to exhibit the rotational symmetry about the directorn0. If
we choose

k̂5F sinqkcoswk

sinqksinwk

cosqk

G and q̂5F sinqqcoswq

sinqqsinwq

cosqq

G , ~104!

then @Bkaqb
v (0)#ab depends only on the relative azimuth

anglew5wq2wk . The existence of mirror planes, contai
ing n0, implies that the structure factor should be invaria
underw→2w. In Appendix C we give its explicit form in
terms ofCk , Sk , Cq , Sq , andw. We also introduce a scale
structure factor@B̃kaqb

v (0)#ab through

@Bkaqb
v

~0!#ab5~D«!2
v2

c2
kBT

K3n2
6 @B̃kaqb

v
~0!#ab , ~105!

which depends on scaled parameters: the relative diele
anisotropya5D«/«' , the Frank elastic constants

K̄15K1 /K3 and K̄25K2 /K3, ~106!

and the magnetic field

h5H/H0 with H05n2
v

c
AK3

Dx
. ~107!

If we introduce the magnetic coherence length

j35A K3

DxH2, ~108!

which gives the length scale over which director fluctuatio
are correlated, we obtain for the scaled magnetic field

h5
l

2pj3
, ~109!

where l5n2v/c. Thus, h51 corresponds to a very sho
coherence length ofl/2p.

In the next subsection we will use the material parame
of a typical nematic compound 5CB to discuss the diffus
constants. 5CB is liquid crystalline at room temperature,
we use the parameters for 5 K below the nematic-isotropic
transition @58#. The bend elastic constant isK355.3
31027dyn and is, as usual for conventional thermotrop
nematic liquid crystals, larger than the splay and twist c
e

.

-
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s
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stants: K̄150.79 and K̄250.43. For green light
(v/c51.153105 cm21) the dielectric constant is
«'52.381 and the anisotropy isa50.228 corresponding to
the refractive indicesn1(q590°)51.710 andn251.543. Fi-
nally, the magnetic anisotropy isDx50.9531027, from
which we obtain a characteristic magnetic field
H053.63105 G.

C. Light diffusion – results

In this subsection we discuss the two essential com
nentsD i andD' of the diffusion tensorD(v), which de-
scribe the diffusion of light, respectively, parallel and pe
pendicular to the directorn0. Before we can apply our
general formulas from Eqs.~62!, ~63!, and ~71! we need to
be more specific about our basis functionswi( k̂), and we
need the derivatives of the components@G0

21#a , which we
gave in Eq.~21!. The calculations for the latter are straigh
forward and the results for the extraordinary and ordin
light mode are, respectively,

ñ1~ k̂!
]@G0

21#1

]k U
k̂

•K52
2

«'
S A12Ck

2coswk

A11a
K'1CkK i D

~110!

and

]@G0
21#2

]k U
k̂

•K52
2

«'

~A12Ck
2coswkK'1CkK i!.

~111!

In the above, we chose

K5@K' ,0,K i#, ~112!

wrote k̂ in spherical coordinates as in Eq.~104! and then
switched to the newC coordinate. The right-hand side of Eq
~111! for the ordinary mode is the isotropic resultk̂•K,
which is modified in the extraordinary case. As our ba
functions, we choose

w i
a~ k̂!→wg lm

a ~ k̂!5dg
aw lm~Ck ,wk!, ~113!

where w lm(Ck ,wk) stands for a real combination of th
spherical harmonicsYlm(Ck ,wk) and Yl2m(Ck ,wk) in the
new coordinateCk instead of cosqk . It will soon become
clear why the coordinateCk is so helpful. The indexg stands
for the basis of the tensor space, which we identify here w
our basisea ^ea . Only functions with odd parity, i.e., with
odd l , contribute to the diffusion. This is immediately obv
ous from the parity of the structure factor and the derivat
of @G0

21#a . Furthermore, we only need function
w lm(Ck ,wk) containing cosmwk (m>0); sinmwk is not nec-
essary because of the symmetry of@Bkaqb

v (0)#ab . With this
choice of basis functions the matrixB is decomposed into
submatrices for eachm, @B#g8 l 8m8

g lm }dmm8, because a term
cosmwkcosnwq (nÞm) is not compatible with the rotationa
symmetry of the structure factor. Then, the diffusion co
stantsD i and D' are, respectively, related tom50 and
m51:
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D iK i
25

c

2n3
(

gg8 l l 8
@G~K!#g l0@B21#g8 l 80

g l0
@G~K!#g8 l 80 ,

~114!

D'K'
25

c

2n3
(

gg8 l l 8
@G~K!#g l1@B21#g8 l 81

g l1
@G~K!#g8 l 81

~115!

with

n35n2
3~11a/2!5~«'!3/2~11a/2!. ~116!

Only elements ofG(K) with l51 are nonzero,@G(K)#g1m
Þ0, since the right-hand sides of Eqs.~110! and ~111! de-
pend only onl51 basis functions. This raises the question
how important higher-l contributions are. For our calcula
tions we, therefore, choosel51 andl53 functions:

w10~C,w!5A6pC, ~117a!

w11~C,w!5A6pA12C2cosw, ~117b!

w30~C,w!5A 7
2pC~5C223!, ~117c!

w31~C,w!5
A21
2

pA12C2~125C2!cosw ~117d!

with the normalization

E dCdw

~2p!3
w lm~C,w!w l 8m8~C,w!5d l l 8dmm8 . ~118!

The nonzero components ofG(K) turn out to be

@G~K!#110522«'~11a!K i /A6, ~119a!

@G~K!#210522«'K i /A6, ~119b!

@G~K!#111522«'A11aK' /A6, ~119c!

@G~K!#211522«'K' /A6. ~119d!

The integrations to obtain the matrix elements ofB require
more effort. We were able to calculate the integrals ovew
analytically with the help of

E dwkdwqf ~wq2wk!52pE dw f ~w!, ~120a!

E dwkdwqf ~w!coswkcoswq5pE dw f ~w!cosw,

~120b!

E dwkdwqf ~w!cos2wk5pE dw f ~w!. ~120c!

The results are listed in Appendix C. The remaining integ
tions were performed numerically.

To discuss the diffusion constants we collect the pref
tors of the quantities involved to obtain an ‘‘averaged
transport mean free path,
f

-

-

l 0*59p
c'
2

v2

K3

kBT

1

a2 ~121!

and write the diffusion constantD i andD' in the form

D i5c'l 0* D̃ i /3, D'5c'l 0* D̃' /3, ~122!

reminiscent of isotropic systems. The numerical factorsD̃ i

andD̃' only depend on the scaled parametersa, h, K̄1, and
K̄2, andc' is the speed of light of the ordinary light ray. W
stress thatl 0* is an averaged quantity and that our theory do
not give a procedure to construct transport mean free p
for different light directions~see, however, Ref.@42#!. The
factor 9p in l 0* is chosen such thatD̃ i andD̃' are approxi-
mately 1 in the limit of an ‘‘isotropic’’ nematic with
K̄15K̄251, a50, and h50. We find D̃ i51.053 and
D̃'50.998 with a small anisotropy ofD i /D'51.06 because
of the inherent anisotropy in the nematic structure fact
which is represented by the geometrical fac
N(ea ,eb ,ûd) of Eq. ~101!. We, at least qualitatively, under
stand whyD i is larger thanD' . The diffusion constants
grow when the system’s ability to scatter light decreas
From Eqs.~114! and~115! for D i andD' , we recognize that
the diffusion constants are, respectively, determined by s
tering around the director (m50) or perpendicular to it
(m51). However, forward and backward scattering alo
the director is suppressed by the geometrical factor and
expectD i to be larger thanD' . In a completely isotropic
system, where we setN(ea ,eb ,ûd) equal to 1, the transpor
mean free path is easy to calculate. It is a factor of
smaller thanl 0* , which again demonstrates the effect of t
geometrical factor. For temperatureT5300 K and the pa-
rameters of the compound 5CB, which we summarized in
last subsection, we obtainl 0*52.3 mm, in agreement with
experiments@41,42#.

In the following we will explore the dependence of th
diffusion constants on the scaled parametersK̄1, K̄2, a, and
h. In Figs. 5 and 6 we plot the relative changes of the dif
sion constants when spherical harmonics ofl53, in addition
to l51, are included in the calculations. The field depe
dence in Fig. 5 shows that the changes are around 1%
smaller and thatD' is more strongly affected by highe
spherical harmonics. The same is valid for theK̄1 and K̄2

dependence in Fig. 6. Only for extreme situationsK̄1,0.1 or
K̄2,0.1 do the changes grow to 3%. We conclude that
restriction to spherical harmonics ofl51 gives a good ap-
proximation for the diffusion constants. The followin
graphs will, however, all be presented with thel53 contri-
butions included.

For the nematic compound 5CB we show in Fig. 7 ho
the diffusion constantsD̃ i andD̃' and the relative anisotropy
(D i2D')/D' behave in a magnetic field.D̃ i and D̃' grow
with H because the magnetic field suppresses dire
fluctuations. The field dependence of the relative anisotr
in the diffusion is weak. For ordinary magnetic fields u
to 53104 G, which corresponds to a magnetic coheren
length j3 of approximately 1mm, the changes inD̃ i and
D̃' are small. The values forH50 read D̃ i50.95 and
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D̃'50.65 with a ratioD̃ i /D̃'51.45 in good agreement with
experiments@41,42#. The reason why we plotD̃ i , D̃' , and
(D i2D')/D' on a large field range is to show that the
quantities smoothly approach finite values ath50. This is
not obvious since the structure factor possesses a singula
at h50 and for vanishing scattering vectorqs . Strictly
speaking, our weak-scattering approximation is not app
cable here. However, in a completely isotropic model w
understand why the quantities are finite. The familiar facto
12cosqs in formula ~75! cancels the singularity fromqs

2

}12cosqs .
In Fig. 8 we explore the anisotropy in the diffusion de

pending on the anisotropya in the dielectric constants. As
already discussed, whena50 there is a small nonzero value
of (D i2D')/D' . This grows witha because the speed of
light of the extraordinary light ray is larger along the directo
than perpendicular to it. On the other hand, fora,20.15,

FIG. 5. Field dependence of the relative changes of diffusio
constants afterl53 spherical harmonics~superscript 13! are in-
cluded in addition tol51 spherical harmonics~superscript 1!. Pa-
rameters areK̄15K̄251 and a50. The magnetic field is given
relative to the characteristic fieldH053.63105 G of the nematic
compound 5CB.

FIG. 6. Relative difference as a function ofK̄1 and K̄2 at
a50, h50.1 betweenD'

(1) calculated withl51 spherical harmon-
ics only andD'

(13) calculated with bothl51 andl53.
ity

i-
e
r

the anisotropy (D i2D')/D' changes sign, and light dif
fuses faster perpendicular to the director. This effect and
inversion pointD i5D' should be observable in discoti
nematics wherea is negative.

Finally, we discuss the dependence of the diffusion on
elastic constantsK̄1 and K̄2. In Fig. 9 we show thatD̃'

decreases with the elastic constants since the light scatte
from the director modes increases. At the extreme val
K̄15K̄250.01, we findD̃'50.07. The contour lines revea
an asymmetry between the splay (K̄1) and the twist (K̄2)
distortions.D̃' decreases more strongly withK̄2. The diffu-
sion constantD̃ i shows a similar behavior. Figure 10 give
the anisotropy (D i2D')/D' for the same range. It grow
with decreasing elastic constants showing thatD̃' is more
affected by splay and twist distortions thanD̃ i . The asym-
metry between splay and twist is clearly visible. The last t
graphs cover the range of conventional thermotropic nem
ics where usuallyK̄1,1 and K̄2,1. In Fig. 11 we extend

n FIG. 7. Field dependence of the diffusion constantsD̃ i and
D̃' and the relative anisotropy (D i2D')/D' for the nematic com-
pound 5CB (K̄150.79, K̄250.43, a50.228, and H053.6
3105 G).

FIG. 8. Relative anisotropy (D i2D')/D' depending on the
dielectric anisotropya for K̄15K̄251 andh50.01.
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528 55HOLGER STARK AND TOM C. LUBENSKY
this range toK̄15K̄2510 and observe that the anisotrop
(D i2D')/D' changes sign. The contour line on the base
the coordinate system indicates whereD i5D' . Roughly
speaking,D i,D' if K̄1.0.6 andK̄2.1.4. In a smectic-A
phase~Sm-A) twist and bend deformations are expelled b
the layered structure@59#, henceK̄1!1. Unfortunately, this
also means that certain scattering vectors show very we
scattering so that the diffusion approximation cannot b
achieved for reasonably sized samples. However, in the
cinity of a Sm-A-nematic phase transition, where the layere
structure softens~Sm-A) or starts to form~nematic phase!,
the diffusion approximation of light could be used to stud
the behavior of the Frank elastic constants close to the tra
sition. A second interesting system is a polymer nematic li
uid crystal. For long rigid rods one expects a large spla
constant@60,61#. Taratutaet al. @62# determined the Frank
elastic constants for a special system and found the rat
K̄150.85 and K̄250.07 with an absolute value of
K354.731027 dyn, which is suitable for the diffusion ap-
proximation of light. From these parameters we predict
‘‘large’’ ratio of D i /D'52.8. The reported system has a
very low dielectric anisotropya and scatters light only
weakly. However, it should be possible to find systems th
are more favorable regardinga.

FIG. 9. Diffusion constantD̃' depending onK̄1 andK̄2. Param-
eters area50 andh50.1.

FIG. 10. Relative anisotropy (D i2D')/D' depending onK̄1

and K̄2, which range from 0.01 to 1. Parameters area50 and
h50.1.
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We also calculated a Taylor expansion for the relati
anisotropy (D i2D')/D' aroundK̄15K̄251 anda50 and
found

D i2D'

D'

'0.0620.1~K̄121!20.3~K̄221!

10.3a10.1~K̄121!210.2~K̄221!2

20.08~K̄121!~K̄221!, ~123!

where the coefficients are material independent. Second
der terms ina and couplings toK̄1 and K̄2 are negligible.
The expansion summarizes the whole discussion.

D. Diffusing wave spectroscopy

With diffusing wave spectroscopy it is possible to me
sure the averaged dynamical properties of a system thro
the dynamic absorption coefficientm(v,t) of Eq. ~64!. Di-
rector modes are purely diffusive, as described by Eq.~100!
for the structure factor, and possess a viscosityhd(qs),
which we specify here@54#:

h1~qs!5g2
~m3q'

22m2qi
2!2

hbq'
41hcqi

41hmq'
2qi

2 , ~124a!

h2~qs!5g2
m2
2qi

2

haq'
21hbqi

2 ~124b!

with

ha5m4 /2, ~125a!

hb5~2m21m41m5!/2, ~125b!

hc5~m31m41m6!/2, ~125c!

hm5m11hb1hc . ~125d!

The Leslie viscositiesm i govern the viscous flow of the fluid
and couple it to the director motion. The Miesowicz viscos
ties ha , hb , andhc can be measured in pure flow exper
ments. The rotational viscosityg characterizes viscous

FIG. 11. Relative anisotropy (D i2D')/D' depending onK̄1

and K̄2, which range from 0.1 to 10. Parameters area50 and
h50.1.
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55 529MULTIPLE LIGHT SCATTERING IN ANISOTROPIC . . .
forces due to rotations of the director. With the explicit fo
mula ~100! for the structure factor and small enough tim
to expand the exponential time factor,m(v,t) becomes pro-
portional to timet,

m~v,t !'~D«!2kBT
p3 v4

2n3c3
(

a,b,d
E
k̂a
E
q̂b

N~ea ,eb ,ûd!

hd~qs!
t.

~126!

If we collect all the prefactors, the dynamic absorption co
ficient can be written as

m~v,t !5m0t with m05a2
2kBT

9p

v4

c'
3

m̃

g
. ~127!

Here the numerical factorm̃ is a dimensionless angula
average involving the geometrical factor and the viscosi
of the director modes. It depends on the Leslie viscosi
relative tog and the dielectric anisotropya, and it is equal 1
if hd(qs)5g anda50. Whenhd(qs)5g, m̃ can be evalu-
ated analytically even foraÞ0, and we find m̃5(1
1a/4)/(11a/2). For the compound 5CB,g/m̃50.60
60.20 P was experimentally determined by Kaoet al.using
DWS and the last formula@41,42#. This value is in good
agreement with the rotational viscosityg50.81 P of 5CB
@58# and shows the validity of the theory. Of courseg is
larger than the measuredg/m̃ sincehd(qs) is smaller than
g @see Eqs.~124a! and ~124b!# so thatm̃ exceeds 1. How-
ever, the values of the Leslie viscosities are such thatm̃ is of
order 1 in usual thermotropic nematics. Furthermore,
Leslie-Erickson theory seems to describe the director mo
properly down to 431028 s, the time resolution of the ex
periments, since there is no indication for a deviation fro
the linear time dependence ofm(v,t) predicted by the dif-
fusive director modes. Materials where the viscosit
hd(qs) for different values of qs differ by factors of
1022103 are polymer nematic liquid crystals@62# with some
director modes relaxing on a much larger time scale t
they do in ordinary nematics. It would be interesting to stu
such systems to see if they exhibit a deviation from
Leslie-Erickson theory for short times which, e.g., wou
show up in a different temporal power law form(v,t).

Finally, we point out an important difference betwe
nematic liquid crystals and colloidal suspensions. The
namic absorption coefficient~126! only contains the viscosi
ties of the director modes. The Frank elastic constants ca
because they determine both the light scattering and the
namics. On the other hand, in colloidal suspensions@49#
m052DBv2/( l * c), where the transport mean free pathl *
characterizes light propagation and the diffusion cons
DB the Brownian motion of the colloidal particles.
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APPENDIX A: THE BETHE-SALPETER EQUATION

The averaged two-particle Green function with all spa
time coordinates looks like

F~x1 ,y1 ,t1,t̄1 ;x2 ,y2 ,t2 ,t̄2!

5^GR~x1 ,x2 ;t1 ,t2! ^GA~y2 ,y1 ; t̄2 ,t̄1!&
~N!. ~A1!

After integration over electric field sourcesW0(2) at points
(x2 ,t2) and (y2 ,t̄2) it provides us with the full autocorrela
tion functionW(1) of the electric light field at (x1 ,t1) and
(y1 ,t̄1):

W~1!5E d2F~1,2!W0~2!. ~A2!

In the following we abbreviate a pair of points in space tim
by its indexi . The two-particle Green function follows from
the Bethe-Salpeter equation@50#

F~1,4!5f~1,4!1E d2d3f~1,2!U~2,3!F~3,4!. ~A3!

The quantityf(1,2) stands for the tensor product of the a
eraged one-particle Green functions:

f~1,2!5@^GR&~x12x2 ;t12t2! ^ ^GA&~y22y1 ; t̄22 t̄1!#
~N!.
~A4!

It propagates two electric field modes from 2 to 1 betwe
their scattering events. The irreducible vertex functionU de-
scribes different characteristic sets of scattering events@50#.
We will soon specify it. Note that there is no preferred po
in time and that the scattering medium on average is ho
geneous in space. Therefore, all our averaged quantitie
not change under translations in space time, and hence
can only depend on differences of the coordinates. We n
introduce center-of-‘‘mass’’ (Ri ,Ti) and relative (r i ,t i) co-
ordinates:

xi5Ri1r i /2, yi5Ri2r i /2,

~A5!

t i5Ti1t i /2, t̄ i5Ti2t i /2.

It is straightforward to show that the Jacobian determin
for this coordinate transformation is 1, and we have

di5d3Rid
3r idTdt. ~A6!

All of our quantities only depend on differences in th
center-of-‘‘mass’’ coordinatesRi andTi because of the ho
mogeneity in space time. To discuss the Bethe-Salp
equation we perform a Fourier transformation,

E d3~Ri2Rj !d
3~Ti2Tj !d

3r id
3r jd

3t id
3t j•••

3exp$2 i @K•~Ri2Rj !1ki•r i2kj•r j #%

3exp$ i @V~Ti2Tj !1v i t i2v j t j #%, ~A7!

which transforms our quantities as follows:
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F~1,4!→Fk1k4

v1v4~K,V!,

U~2,3!→Uk2k3

v2v3~K,V!, ~A8!

f~1,2!→fk1
v1~K,V!dv1v2

1k1k2
~4! ,

wheredv1v2
52pd(v12v2), and1k1k2

(4) , defined in Eq.~51!,

containsd(k12k2). Thed functions appear sincef(1,2) only
depends on the differences of the relative coordinates. In
~50! we give the explicit form offk1

v1(K,V). The Fourier

transformed Bethe-Salpeter equation finally takes the for

E d3k1
~2p!3

dv1

2p
@1kk1

~4!dvv1

2fk
v~K,V!Ukk1

vv1~K,V!#F
k1k8

v1v8
~K,V!

5fk
v~K,V!1kk8

~4! dvv8 ~A9!

and the autocorrelation functionW(K,k,V,v) for light with
frequencyv and wave vectork follows from

W~K,k,V,v!5E d3k8

~2p!3
dv8

2p
Fkk8

vv8~K,V!W0~K,k8,V,v8!.

~A10!

So far, our manipulations are generally valid. Now w
introduce some approximations. We use the weak-scatte
approximation in which the irreducible vertex function
given by @50#

U~1,2!'^d«~x1 ,t1! ^ d«~y1 ,t̄1!&
~N!

1

c4
]2

]t1
2

]2

]t̄1
2

3d~x12x2!d~y12y2!d~t12t2!d~ t̄12 t̄2!.

~A11!

It only considers scattering events of the two electric fi
modes, which are tied together through the structure fac
Figure 12 gives a graphic representation ofU(1,2). In center-
of-‘‘mass’’ and relative coordinates we obtain

FIG. 12. The irreducible vertex functionU(1,2) in the weak-
scattering approximation. The second pair of points in space tim
tied to the structure factor via delta functions.
q.

ng

r.

U~1,2!5^d«~r1 ,t1! ^ d«~0,0!&~N!
1

c4
]4

]t1
4

3dSR12R21
r12r2
2 D dSR12R22

r12r2
2 D

3dS T12T21
t12t2
2 D dS T12T22

t12t2
2 D ,

~A12!

where we neglect the partial derivative]/]T, which probes
time variations on much longer time scales than the ti
period of light. Then, in Fourier space, we obtain

Uk1k2

v1v2~K,V!5
v2
4

c4
^d«^ d«&~N!~k12k2 ,v12v2!,

~A13!

where the time derivative of ad function was handled with
its representation via plane waves. Since the temporal co
lations in the dielectric tensor decay on a time scale m
longer than the time period of light,Uk1k2

v1v2(K,V) is strongly

peaked aroundv15v2. The Bethe-Salpeter equation~A9!

then implies the same behavior forFkk8
vv8(K,V), i.e.,

Fkk8
vv8(K,V)}p(v2v8)g(v8), wherep(v2v8) stands for

the strongly peaked part aroundv5v8 and g(v8) for the
remaining smooth function inv8. The Green function

Fkk8
vv8(K,V) picks up a source term of frequencyv8 and

produces an autocorrelation function with frequenciesv cen-
tered narrowly aroundv8. In the time domain this corre
sponds to exp(iv8t) times a slowly varying factor int. It is
therefore appropriate to introduce the Green function

Fkk8
v8 ~K,V,t !5E d3~v2v8!Fkk8

vv8e2 i ~v2v8!t, ~A14!

which gives this factor for light sources of frequencyv8. If
we multiply Eq. ~A9! by exp@2 i (v2v8)t#, rewrite the ar-
gument of^d«^ d«& (N) asv2v15v2v82(v12v8), and
integrate overt, we finally arrive at the Bethe-Salpeter equ

tion of Sec. III B forFkk8
v8 (K,V,t):

E d3k1
~2p!3

@1kk1
~4!2fk

v8~K,V!Bkk1
v8 ~ t !#Fk1k8

v8 ~K,V,t !

5fk
v8~K,V!1kk8

~4! ~A15!

with

Bkk1
v8 ~ t !5

~v8!4

c4
^d«^ d«&~N!~k2k1 ,t !. ~A16!

In deriving the last equation we replaced the argumentv in
fk
v(K,V) in Eq. ~A9! by v8 and the factor v1

4 in
Ukk1

vv1(K,V) by (v8)4.

is
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APPENDIX B: TWO IDENTITIES

1. Ward identity

The Ward identity establishes a linear relation betwe
the irreducible vertex functionU and the mass operator. I
the weak-scattering approximation it says

DSk
v~K,0!5E d3k8

~2p!3
Bkk8

v
~ t50!DGk8

v
~K,0!, ~B1!

which can be proven by a variable transformation of
integrand. For the general case see Vollhardt and Wo¨lfle
@51#.

2. A useful identity

In this subsection we derive a useful relation betwe
DGk

v(K,V), fk
v(K,V), and DSk

v(K,V). We start with the
definition

DGk
v~K,V!5^GR&~k1 ,v1!2^GA&~k2 ,v2! ~B2!

and insert the unit tensor1 in the appropriate representatio

DGk
v~K,V!5^GR&~k1 ,v1!~@^GA&~k2 ,v2!#21

2@^GR&~k1 ,v1!#21!^GA&~k2 ,v2!.

~B3!

Then we introducêGR/A&(k6 ,v6) from Eq. ~33!, use defi-
nitions~44! and~50! for DSk

v(K,V) andfk
v(K,V), and arrive

at the final equation:

DGk
v~K,V!5fk

v~K,V!@DSk
v~K,V!2$G0

21~k1 ,v1!

2G0
21~k2 ,v2!%#. ~B4!

In the caseK,V→0, we get to first order inK andV:

DGk
v~K,V!'fk

v~0,0!FDSk
v~0,0!2

]G0
21

]k
K2

]G0
21

]v
VG ,

~B5!

where we neglect first-order terms fromfk
v andDSk

v because
the components ofDSk

v are already much smaller than on
The last equation shows that the leading order inK andV
comes solely fromG0(k,v).

In Sec. III A we calculated the Green function
^GR/A&(k,v) to first order inSR/A(k,v). They were diagona
and only involved the diagonal elements ofSR/A(k,v). Let
us look at Eq.~B5! under this approximation, concentratin
on the propagating part of our quantities only. As explain
in the main text a Greek superscript or subscript correspo
respectively, to the basis ‘‘vector’’ea( k̂)^ea or da( k̂)^da.
For fk

v(0,0) we find
n

e

n

d
s,

fk
v~0,0!5@^GR&~k,v! ^ ^GA&~k,v!#~N!

'(
a,b

@^GR&~k,v!#a@^GA&~k,v!#b

3ea~ k̂! ^eb~ k̂! ^ea~ k̂! ^eb~ k̂!. ~B6!

Terms such ase1^e2^e1^e2 appear because the superscr
(N) tells us to interchange the second and third basis vec
in ^GR& ^ ^GA&. They only couple nondiagonal componen
to each other. Since nondiagonal elements are beyond
approximation we do not have to consider them. Then we
able to write

@ fk
v~0,0!#ab5H @^GR&~k,v!#a@^GA&~k,v!#a, a5b,

0, aÞb.
~B7!

The component 0 refers to terms such ase1^e1^e2^e2. The
derivation ofG0

21 with respect tov just gives

]@G0
21#a

]v
V5

2v

c2
V. ~B8!

The derivation with respect tok contains two contributions:

]G0
21

]k
5(

a
F]@G0

21#a

]k
da~ k̂! ^da~ k̂!

1@G0
21#a

]

]k
@da~ k̂! ^da~ k̂!#G . ~B9!

The second one only produces nondiagonal elements tha
do not have to consider. This statement seems to be obv
because a small rotation ofk rotatesda( k̂). But our basis
vectors are more general and we have to look at it m
carefully. We have to show thatei( k̂)•(]/]kj )d

i( k̂) is zero.
With di5«0ei and «0 being symmetric and independent
k we can write

ei~ k̂!•
]

]kj
di~ k̂!5di~ k̂!•

]

]kj
ei~ k̂!. ~B10!

From the biorthogonality relation it is clear that

di~ k̂!•
]

]kj
ei~ k̂!52ei~ k̂!•

]

]kj
di~ k̂!, ~B11!

which verifies the statement. We are now able to write do
Eq. ~B5! within our approximation:

@DGk
v~K,V!#a'@ fk

v~0,0!#aaS @DSk
v~0,0!#a

2
]@G0

21#a

]k
•K2

2v

c2
V D . ~B12!

APPENDIX C: STRUCTURE FACTOR

We give the two important structure factors in scal
form and in the coordinatesCk , Sk , Cq , Sq , andw. From
the notation it is clear whether they belong to an extraor
nary or ordinary light ray. The parameters area, K̄1, K̄2, and
h:
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@B̃k1q2
v

~0!#125
1

~11a!2
Sk
2

Q'
2 F Sk

2sin2w

K̄1Q'
21Qi

21h2
1

~Skcosw2Sq!
2

K̄2Q'
21Qi

21h2
G , ~C1a!

@B̃k1q1
v

~0!#115
1

~11a!2
1

Q'
2 F cos2wN112coswN21N3

K̄1Q'
21Qi

21h2
1

sin2wN4

K̄2Q'
21Qi

21h2
G ~C1b!

with

Qi
25~Ck2Cq!

2, Q'
25Sk

222SkSqcosw1Sq
2 ~C2!

and

N15~Sk
2Cq2Sq

2Ck!
2, N25SkSq~Sk

2Cq2Sq
2Ck!~Ck2Cq!

~C3!
N35Sk

2Sq
2~Ck2Cq!

2, N45~Sk
2Cq1Sq

2Ck!
2.

The integration overw gives

E @B̃k1q2
v

~0!#12dw5
p

2

Sk
2

Sq
2F 1
K̄2

2
1

K̄1

1
1

C~h! S I21~K̄1!

K̄1

2
I21~K̄2!

K̄2
D 14Sq

2I ~K̄2!G , ~C4a!

E cosw@B̃k1q2
v

~0!#12dw5
p

4

Sk
Sq
3FC~h!12K̄2~Sk

22Sq
2!

K̄2
2

2
C~h!12K̄1~Sk

21Sq
2!

K̄1
2

1
1

C~h! S C~h!1K̄1~Sk
21Sq

2!

K̄1
2I ~K̄1!

2
C~h!1K̄2~Sk

21Sq
2!

K̄2
2I ~K̄2!

D 1
4Sq

2

K̄2

@C~h!1K̄2~Sk
21Sq

2!#I ~K̄2!G , ~C4b!

E @B̃k1q1
v

~0!#11dw5
p

2 F S Sk2Sq2Cq
21

Sq
2

Sk
2Ck

2D S 1

K̄1

2
1

K̄2
D 22CkCqS 1

K̄1

1
1

K̄2
D 1

1

C~h!S SkSqCq1
Sq
Sk
CkD 2S I21~K̄2!

K̄2

2
I21~K̄1!

K̄1
D

1
4

K̄1

I ~K̄1!@K̄1~Sk
2Cq1Sq

2Ck!~Ck1Cq!1C~h!CkCq#G ~C4c!

E cosw@B̃k1q1
v

~0!#11dw5
p

4

1

Sk
3Sq

3F 1
K̄1
2@~Sk

2Cq2Sq
2Ck!

2C~h!12K̄1~Sk
4Cq

22Sq
4Ck

2!~Sk
22Sq

2!#2
1

K̄2
2~Sk

2Cq1Sq
2Ck!

2@C~h!

12K̄2~Sk
21Sq

2!#1
1

C~h!
~Sk

2Cq1Sq
2Ck!

2S C~h!1K̄2~Sk
21Sq

2!

K̄2
2I ~K̄2!

2
C~h!1K̄1~Sk

21Sq
2!

K̄1
2I ~K̄1!

D
1 4Sk

2Sq
2I ~K̄1!

C~h!1K̄1~Sk
21Sq

2!

K̄1
2 @K̄1~Sk

2Cq1Sq
2Ck!~Ck1Cq!1C~h!CkCq#G ~C4d!

with

C~h!5~Ck2Cq!
21h2 and I ~K̄ i !5$@K̄ i~Sk2Sq!

21C~h!#@K̄ i~Sk1Sq!
21C~h!#%21/2. ~C5!

The structure factor@B̃k1q1
v (0)#11 diverges forh50 andq1→k1. We give@B̃k1q1

v (0)#11 for smallw anddC5Ck2Cq :

@B̃k1q1
v

~0!#115
1

~11a!2
4Ck

2

~11a!2Ck
2dC2/Sk

21Sk
2w2 F ~11a!2Ck

2dC2

@K̄1~11a!2Ck
2/Sk

211#dC21K̄1Sk
2w21h2

1
Sk
2Ck

2w2

@K̄2~11a!2Ck
2/Sk

211#dC21K̄2Sk
2w21h2

G . ~C6!
ys
om
@1# B. J. Berne and R. Pecora,Dynamic Light Scattering– With
Applications to Chemistry, Biology, and Physics~John Wiley
& Sons, New York, 1976!.

@2# N. A. Clark, J. H. Lunack, and G. B. Benedek, Am. J. Ph
38, 575 ~1970!.
.

@3# J. K. G. Dhont, inPhoton Correlation Techniques in Fluid
Mechanics, edited by E. O. Schulz-DuBois~Springer Verlag,
Berlin, 1983!.

@4# A. Schuster, Astrophys. J.21, 1 ~1905!.
@5# Scattering and Localization of Classical Waves in Rand



,

V.

ys

r,

l

e

ev

. A

tt

k,

ys

-

v.

se

es

s.

.

v.
.

v.

-

,

r

tt.

55 533MULTIPLE LIGHT SCATTERING IN ANISOTROPIC . . .
Media, edited by P. Sheng~World Scientific, Singapore
1990!.

@6# P. W. Anderson, Phys. Rev.109, 1492~1958!.
@7# E. Abrahams, P. W. Anderson, D. C. Licciardello, and T.

Ramakrishnan, Phys. Rev. Lett.42, 673 ~1979!.
@8# P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys.57, 287

~1985!.
@9# G. Maret and P. E. Wolf, Z. Phys. B65, 409 ~1987!.

@10# M. Rosenbluh, M. Hoshen, I. Freund, and M. Kaveh, Ph
Rev. Lett.58, 2754~1987!.

@11# D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheime
Phys. Rev. Lett.60, 1134~1988!.

@12# D. J. Pineet al., in Scattering and Localization of Classica
Waves in Random Media, Vol. 8 of Directions in Condensed
Matter Physics, edited by P. Sheng~World Scientific, Sin-
gapore, 1990!, pp. 312–372.

@13# A. A. Golubentsev, Zh. E´ksp. Teor. Fiz.86, 47 ~1984! @Sov.
Phys. JETP86, 26 ~1984!#.

@14# M. J. Stephen, Phys. Rev. B37, 1 ~1988!.
@15# F. C. MacKintosh and S. John, Phys. Rev. B40, 2383~1989!.
@16# Y. Kuga and A. Ishimaru, J. Opt. Soc. Am. A1, 831 ~1984!.
@17# M. P. van Albada and A. Lagendijk, Phys. Rev. Lett.55, 2692

~1985!.
@18# P.-E. Wolf and G. Maret, Phys. Rev. Lett.55, 2696~1985!.
@19# S. Etemad, R. Thompson, and M. J. Andrejco, Phys. Rev. L

57, 575 ~1986!.
@20# M. Kaveh, M. Rosenbluh, I. Edrei, and I. Freund, Phys. R

Lett. 57, 2049~1986!.
@21# S. Etemadet al., Phys. Rev. Lett.59, 1420~1987!.
@22# M. Rosenbluh, I. Edrei, M. Kaveh, and I. Freund, Phys. Rev

35, 4458~1987!.
@23# E. Akkermans and R. Maynard, J. Phys.~Paris! Lett. 46,

L 1045 ~1985!.
@24# E. Akkermans, P. E. Wolf, and R. Maynard, Phys. Rev. Le

56, 1471~1986!.
@25# M. J. Stephen and G. Cwilich, Phys. Rev. B34, 7564~1986!.
@26# M. B. van der Mark, M. P. van Albada, and A. Lagendij

Phys. Rev. B37, 3575~1988!.
@27# E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, J. Ph

~Paris! 49, 77 ~1988!.
@28# F. C. MacKintosh and S. John, Phys. Rev. B37, 1884~1988!.
@29# X. L. Wu et al., J. Opt. Soc. Am. B7, 15 ~1990!.
@30# H. Gang, A. H. Krall, and D. A. Weitz, Phys. Rev. Lett.73,

3435 ~1994!.
@31# D. J. Durian, D. A. Weitz, and D. J. Pine, Science252, 617

~1994!.
@32# M. H. Kao, A. G. Yodh, and D. J. Pine, Phys. Rev. Lett.70,

242 ~1993!.
@33# A. G. Yodh and B. Chance, Phys. Today48 ~3!, 34 ~1995!.
@34# D. V. Vlasov, L. A. Zubkov, N. V. Orekhova, and V. P. Ro

manov, Pis’ma Zh. E´ksp. Teor. Fiz.48, 86 ~1988! @JETP Lett.
48, 91 ~1988!#.

@35# H. K. M. Vithana, L. Asfaw, and D. L. Johnson, Phys. Re
Lett. 70, 3561~1993!.

@36# S. Ramaswamy, J. Phys. Chem.98, 9318~1994!.
@37# B. A. van Tiggelen, Phys. Rev. Lett.75, 422 ~1995!.
.

tt.

.

.

.

@38# S. Fraden, inObservation, Prediction, and Simulation of Pha
Transitions in Complex Fluids, Vol. 460 ofNATO Advanced
Studies Institute Ser. C: Mathematical and Physical Scienc,
edited by M. Baus, L. F. Rull, and J. P. Ryckaert~Kluwer
Academic Publishers, Dordrecht, 1995!, pp. 113–164.
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